摘要:
The present invention relates to a microorganism of the genus Escherichia having enhanced L-tryptophan productivity, which has been modified to express yeast anthranilate phosphoribosyltransferase in order to be able to produce L-tryptophan at high concentration, and to a method for producing L-tryptophan, comprising a step of culturing the microorganism. The microorganism of the genus Escherichia can produce L-tryptophan, and thus can be advantageously used in the pharmaceutical industry and the feed industry, particularly for animal feed.
摘要:
The present invention relates to a microorganism able to produce L-threonine or L-tryptophan, and to a method for producing L-threonine or L-tryptophan by using same. More specifically, the present invention relates to: recombinant Escherichia coli which is more efficient in producing L-threonine or L-tryptophan by increasing the ability to produce ATP which is used as the most plentiful energy source in cells when producing L-threonine or L-tryptophan; and a method for producing L-threonine or L-tryptophan by using same.
摘要:
The present application relates to a microorganism of the genus Escherichia producing L-tryptophan and, more specifically, to a microorganism of the genus Escherichia with improved activity of producing L-tryptophan by weakening or inactivating the activity of endogenous 6-phosphogluconate dehydratase and 2-keto-3-deoxy-6-phosphogluconate aldolase.Additionally, the present application relates to a method for producing L-tryptophan using the microorganism of the genus Escherichia.
摘要:
The present invention relates to a microorganism of the genus Escherichia having enhanced L-tryptophan productivity, which has been modified to express yeast anthranilate phosphoribosyltransferase in order to be able to produce L-tryptophan at high concentration, and to a method for producing L-tryptophan, comprising a step of culturing the microorganism. The microorganism of the genus Escherichia can produce L-tryptophan, and thus can be advantageously used in the pharmaceutical industry and the feed industry, particularly for animal feed.
摘要:
The present invention relates to a microorganism able to produce L-threonine or L-tryptophan, and to a method for producing L-threonine or L-tryptophan by using same. More specifically, the present invention relates to: recombinant Escherichia coli which is more efficient in producing L-threonine or L-tryptophan by increasing the ability to produce ATP which is used as the most plentiful energy source in cells when producing L-threonine or L-tryptophan; and a method for producing L-threonine or L-tryptophan by using same.
摘要:
The present invention relates to a microorganism able to produce L-threonine or L-tryptophan, and to a method for producing L-threonine or L-tryptophan by using same. More specifically, the present invention relates to: recombinant Escherichia coli which is more efficient in producing L-threonine or L-tryptophan by increasing the ability to produce ATP which is used as the most plentiful energy source in cells when producing L-threonine or L-tryptophan; and a method for producing L-threonine or L-tryptophan by using same.
摘要:
The present invention relates to a microorganism of the genus Escherichia in which L-tryptophan productivity is improved by inactivating phosphatase activity. Further, the present invention relates to a method for producing L-tryptophan using the microorganism of the genus Escherichia.
摘要:
The present invention relates to an E. coli mutant strain having enhanced L-threonine productivity, which is obtained by introducing the permease of Corynebacterium origin, and to method of producing L-threonine using the E. coli mutant strain.
摘要:
The present application relates to an L-threonine-producing microorganism and a production method for L-threonine using the same, and more specifically, to a microorganism having enhanced L-threonine productivity and a method for producing L-threonine in high yield using the same.
摘要:
The present disclosure relates to a microorganism of the genus Escherichia producing more L-tryptophan by inactivating the activity of phosphatase. Additionally, the present disclosure relates to a method for producing L-tryptophan using the microorganism of the genus Escherichia.