Abstract:
The present disclosure discloses an array substrate, a manufacturing method thereof, a display substrate, and a display device, belonging to the technical field of display. The array substrate includes: a flexible base, and, a TFT and a connecting line which are on a side of the flexible base. The array substrate has a display area and a lead area. The TFT is in the display area. The connecting line is in the lead area. The connecting line is used to electrically connect the TFT to a drive circuit. A manufacturing material of the connecting line includes a flexible conductive material. Since the material forming the connecting line includes a flexible conductive material, and the flexible conductive material has electrical conductivity and is not easily broken, the breaking probability of the connecting line is reduced, and the yield of the display device is effectively improved.
Abstract:
Disclosed are an array substrate and a manufacturing method therefor, a display panel and a display apparatus. The array substrate comprises several pixel units located on a base substrate and arranged in an array, with each of the pixel units comprising a thin-film transistor, and the thin-film transistor comprising a polycrystalline silicon active layer, wherein a length extension direction of a channel of the thin-film transistor is parallel to a pre-set direction; and the pre-set direction is a scanning direction of an excimer laser beam used when forming the polycrystalline silicon active layer.
Abstract:
The present disclosure provides a low temperature polycrystalline silicon field effect TFT array substrate and a method for producing the same and a display apparatus. The method: using a stepped photo resist process to form a polycrystalline silicon active layer and a lower polar plate of a polycrystalline silicon storage capacitor simultaneously on a substrate in one lithographic process; forming a gate insulation layer on the polycrystalline silicon active layer and the lower polar plate of the polycrystalline silicon storage capacitor; forming a metal layer on the gate insulation layer and etching the metal layer to form a gate electrode and gate lines connected with the gate electrode, a source electrode, a drain electrode and data lines connected with the source electrode and the drain electrode; forming a passivation layer, a photo resist layer and a pixel electrode layer in sequence and patterning the passivation layer, the photo resist layer and the pixel electrode layer to form patterns of an interlayer insulation layer via hole and a pixel electrode in one lithographic process; forming a pixel definition layer on the pixel electrode. The present disclosure may reduce times of lithographic processes for the low temperature polycrystalline silicon field effect TFT array substrate, improve the yield and reduce the costs.
Abstract:
The invention relates to the field of laser annealing, and discloses a laser annealing device, a production process of a polycrystalline silicon thin film, and a polycrystalline silicon thin film produced by the same. The laser annealing device comprises an annealing chamber, in which a laser generator is provided, wherein an annealing window, through which the laser passes, and two light-cutting plates oppositely provided above the annealing window are also provided in the annealing chamber, wherein the light-cutting end face of each of the light-cutting plates is a wedge-shaped end face. In technical solutions of the invention, since the light-cutting end face is a wedge-shaped end face, the included angle formed by the reflected beam, which is formed by the reflection of the incident beam arriving at the light-cutting end face, and the ingoing beam, which passes through the annealing window, is relatively large, and the vibrating directions of them differ relatively greatly. Hence, the phenomenon of interference will hardly occur, and thus the interference mura generated on the polycrystalline silicon thin film due to the interference is reduced, the quality of the polycrystalline silicon thin film is improved, and the percent of pass of the product is also increased.
Abstract:
A glossy display panel, a manufacturing method thereof and a display device are provided. The glossy display panel includes a display area and a non-display area; wherein the non-display area includes a binding area, and the glossy display panel includes a first conductive pattern located on a base substrate and located in the binding area; a first insulating layer covering the first conductive pattern, wherein the first insulating layer is provided with a first via hole, and an orthographic projection of the first via hole onto the base substrate is located within an orthographic projection of the first conductive pattern onto the base substrate; a glossy reflection layer, wherein an orthographic projection of the glossy reflection layer onto the base substrate does not overlap with an orthographic projection of the binding area onto the base substrate; and a chip on film.
Abstract:
In an embodiment, there is provided a display substrate assembly. The display substrate assembly includes: a base substrate; a light-shielding layer on the base substrate, the light-shielding layer having a plurality of light-shielding elements; and a plurality of polysilicon layers respectively on sides of the plurality of light-shielding elements away from the base substrate; wherein the plurality of light-shielding elements have different sizes such that energy lights reflected and/or refracted through the plurality of light-shielding elements of different sizes respectively generate different thermal energy distributions on the plurality of polysilicon layers corresponding to the plurality of light-shielding elements, causing the plurality of polysilicon layers to have different crystal forms. Meanwhile, a method of manufacturing the display substrate assembly and a display apparatus including the aforementioned display substrate assembly are also provided.
Abstract:
A carbon nanotube thin film transistor and a manufacturing method thereof are provided in the embodiments of the present disclosure. The carbon nanotube thin film transistor includes: a base substrate; a gate electrode, a semiconductor layer, a source electrode and a drain electrode, which are disposed on the base substrate, the semiconductor layer includes a poly(3-hexylthiophene) layer and a mixing layer of semiconducting carbon nanotube and poly(3-hexylthiophene) which are stacked. The semiconducting carbon nanotube thin film transistor has a high purity, thus the metallic carbon nanotubes are substantially cleared out and the electrical property of the thin film transistor is ensured, so that the manufactured carbon nanotube thin film transistor has good electrical properties.
Abstract:
An array substrate and manufacturing method thereof, a display panel and a display device are provided. The array substrate includes a display area and a peripheral circuit area. The method includes forming an amorphous silicon thin film on the base substrate, forming a first amorphous silicon layer in the display area and a second amorphous silicon layer in the peripheral circuit area by a patterning process, so that a thickness of the first amorphous silicon layer is less than a thickness of the second amorphous silicon layer; and processing the first amorphous silicon layer and the second amorphous silicon layer simultaneously by an excimer laser annealing to form a first poly-silicon layer in the display area and a second poly-silicon layer in the peripheral circuit area, a grain size of the first poly-silicon layer being less than a grain size of the second poly-silicon layer.
Abstract:
The present disclosure provides a piezoelectric film sensor, a piezoelectric film sensor circuit and methods for manufacturing the same. The method for manufacturing the piezoelectric film sensor comprises: a step of forming a piezoelectric film on a substrate, and a step of subjecting the piezoelectric film to laser annealing using a laser annealing process so as to complete phase-forming transition of the piezoelectric film. Since the annealing temperature in the laser annealing process can be controlled in a range of 300° C. to 400° C., the manufacturing process can be not only applied to ensure a good performance of a piezoelectric film, but also can be used for manufacturing a flexible piezoelectric film sensor.
Abstract:
Embodiments of the present invention provide a method for forming a low temperature polysilicon thin film. The method for forming the low temperature polysilicon thin film can include: depositing a buffer layer and an amorphous silicon layer on a substrate in this order; heating the amorphous silicon layer; performing an excimer laser annealing process on the amorphous silicon layer to form a polysilicon layer; oxidizing partially the polysilicon layer so as to form an oxidation portion at an upper portion of the polysilicon layer; and removing the oxidation portion of the polysilicon layer to form a polysilicon thin film.