Abstract:
The present invention relates to a process for the preparation of bis-(2-hydroxyethyl)-disulfide by oxidizing 2-mercaptoethanol with oxygen in a reaction mixture comprising at least one homogeneously distributed iron comprising salt or complex as catalyst and at least one tertiary amine, to bis-(2-hydroxyethyl)-disulfide, obtainable with the process, and to the use of this bis-(2-hydroxyethyl)-disulfide as intermediate in the manufacture of chemical compounds, such as lubricant additives and in the tertiary oil recovery.
Abstract:
A process for preparing a tin-containing zeolitic material having a BEA framework structure comprising providing a zeolitic material having a BEA framework structure having vacant tetrahedral framework sites, providing a tin-ion source in solid form, incorporating tin into the zeolitic material via solid-state ion exchange, calcining the zeolitic material, and treating the calcined zeolitic material with an aqueous solution having a pH of at most 5.
Abstract:
A process for the oxidation of an organic carbonyl compound comprising reacting the compound, optionally in the presence of a solvent, with hydrogen peroxide in the presence of a catalyst comprising a tin-containing zeolitic material and at least one potassium salt.
Abstract:
A continuous process for the preparation of propylene oxide, comprising (a) reacting propene, optionally admixed with propane, with hydrogen peroxide in a reaction apparatus in the presence of acetonitrile as solvent, obtaining a stream S0 containing propylene oxide, acetonitrile, water, at least one further component B, optionally propene and optionally propane, wherein the normal boiling point of the at least one component B is higher than the normal boiling point of acetonitrile and wherein the decadic logarithm of the octanol-water partition coefficient (log Kow) of the at least one component B is greater than zero; (b) separating propylene oxide from S0, obtaining a stream S1 containing acetonitrile, water and the at least one further component B; (c) dividing S1 into two streams S2 and S3; (d) subjecting S3 to a vapor-liquid fractionation in a fractionation unit, obtaining a vapor fraction stream S4 being depleted of the at least one component B; (e) recycling at least a portion of S4, optionally after work-up, to (a).
Abstract:
The present invention relates to a process for producing 2,6-dimethyl-5-hepten-1-al, which comprises reacting 3,7-dimethyl-1,6-octadiene (dihydromyrcene, beta-citronellene) with N2O in a solvent or solvent mixture containing at least one solvent having a proton-donating functional group.
Abstract:
The present invention relates to a process for the preparation of compounds or a mixture of compounds of the general formulae I.a or I.b wherein R1 is selected from C1-C12-alkyl, C3-C6-cycloalkyl, —C(═O)OR2, —PO(OR2a)2, aryl and hetaryl, R2, R2a are independently of each other selected from the group consisting of hydrogen, C1-C12-alkyl, C1-C12-alkenyl, where the last two radicals mentioned are unsubstituted, partly or completely halogenated or substituted by 1, 2, 3 or 4 radicals selected from the group consisting of C1-C6-alkoxy and CN, C3-C6-cycloalkyl, C3-C6-cycloalkyl-C1-C4-alkyl, aryl and aryl-C1-C4-alkyl, where the last four radicals mentioned are unsubstituted or substituted by 1, 2, 3 or 4 radicals selected from the group consisting of C1-C6-alkyl, C1-C6-haloalkyl, C1-C6-alkoxy, C1-C6-haloalkoxy, —CN, and halogen, which comprises dimerizing olefin compound of the general formula II, in the presence of at least one N-heterocyclic carbene catalyst.