摘要:
Methods for fabricating light emitting diode (LED) chips comprising providing a plurality of LEDs typically on a substrate. Pedestals are deposited on the LEDs with each of the pedestals in electrical contact with one of the LEDs. A coating is formed over the LEDs with the coating burying at least some of the pedestals. The coating is then planarized to expose at least some of the buried pedestals while leaving at least some of said coating on said LEDs. The exposed pedestals can then be contacted such as by wire bonds. The present invention discloses similar methods used for fabricating LED chips having LEDs that are flip-chip bonded on a carrier substrate and for fabricating other semiconductor devices. LED chip wafers and LED chips are also disclosed that are fabricated using the disclosed methods.
摘要:
A gallium and nitrogen containing substrate structure includes a handle substrate member having a first surface and a second surface and a transferred thickness of gallium and nitrogen material. The structure has a gallium and nitrogen containing active region grown overlying the transferred thickness and a recessed region formed within a portion of the handle substrate member. The substrate structure has a conductive material formed within the recessed region configured to transfer thermal energy from at least the transferred thickness of gallium and nitrogen material.
摘要:
A method for fabricating large-area nonpolar or semipolar GaN wafers with high quality, low stacking fault density, and relatively low dislocation density is described. The wafers are useful as seed crystals for subsequent bulk growth or as substrates for LEDs and laser diodes.
摘要:
A packaged light emitting device (LED) includes a light emitting diode configured to emit primary light having a peak wavelength that is less than about 465 nm and having a shoulder emission component at a wavelength that is greater than the peak wavelength, and a wavelength conversion material configured to receive the primary light emitted by the light emitting diode and to responsively emit light having a color point with a ccx greater than about 0.4 and a ccy less than about 0.6.
摘要:
A system and techniques for performing deposition having a tapered horizontal growth chamber which includes a susceptor and a tapered channel flow block. A tapered chamber is formed between the susceptor and the tapered channel flow block. Gaseous species introduced are forced by the tapered channel block to flow toward the susceptor to enhance the efficiency of reactions between the gases species and a wafer on the susceptor.
摘要:
A light emitting device with a coupled quantum well structure in an active region. The coupled quantum well structure may include two or more wells are separated by one or more mini-barriers, and the wells and mini-barriers together are sandwiched by barriers. The coupled quantum well structure provides almost the same effect as a wide quantum well, due to the coupling of the wavefunctions through the mini-barrier. The light emitting device may be a nonpolar, semipolar or polar (Al,Ga,In)N based light emitting device.
摘要:
A substrate comprising a trench lateral epitaxial overgrowth structure including a trench cavity, wherein the trench cavity includes a growth-blocking layer or patterned material supportive of a coalescent Pendeo layer thereon, on at least a portion of an inside surface of the trench. Such substrate is suitable for carrying out lateral epitaxial overgrowth to form a bridged lateral overgrowth formation overlying the trench cavity. The bridged lateral overgrowth formation provides a substrate surface on which epitaxial layers can be grown in the fabrication of microelectronic devices such as laser diodes, high electron mobility transistors, ultraviolet light emitting diodes, and other devices in which low dislocation density is critical. The epitaxial substrate structures of the invention can be formed without the necessity for deep trenches, such as are required in conventional Pendeo epitaxial overgrowth structures.
摘要:
A method for the fabrication of nonpolar indium gallium nitride (InGaN) films as well as nonpolar InGaN-containing device structures using metalorganic chemical vapor deposition (MOVCD). The method is used to fabricate nonpolar InGaN/GaN violet and near-ultraviolet light emitting diodes and laser diodes.
摘要:
Disclosed is a method for processing GaN based substrate material for manufacturing light-emitting diodes, lasers, and other types of devices. In various embodiments, a GaN substrate is exposed to nitrogen and hydrogen at a high temperature. This process causes the surface of the GaN substrate to anneal and become smooth. Then other processes, such as growing epitaxial layers over the surface of GaN substrate, can be performed over the smooth surface of the GaN substrate.
摘要:
A method for the fabrication of nonpolar indium gallium nitride (InGaN) films as well as nonpolar InGaN-containing device structures using metalorganic chemical vapor deposition (MOVCD). The method is used to fabricate nonpolar InGaN/GaN violet and near-ultraviolet light emitting diodes and laser diodes.