Abstract:
A processing apparatus for processing a flexible substrate, particularly a vacuum processing apparatus for processing a flexible substrate, is described. The processing apparatus includes a vacuum chamber; a processing drum within the vacuum chamber, wherein the processing drum is configured to rotate around an axis extending in a first direction; and a heating device adjacent to the processing drum, wherein the heating device is configured for spreading the substrate in the first direction or for maintaining a spread of the substrate in the first direction, and wherein the heating device has a dimension in a direction parallel to a substrate transport direction of at least 20 mm.
Abstract:
A flanged joint is described. The flanged joint has a first flange member with a first sealing surface and a second flange member with a second sealing surface. The flanged joint further has a hollow-metal gasket between the first flange member and the second flange member, and a spacer between the first flange member and the second flange member. The spacer defines a minimum distance between the first flange member and the second flange member. The flanged joint can be configured to seal a metal-conveying volume.
Abstract:
A vacuum processing system for a flexible substrate is provided. The processing system includes a first chamber adapted for housing one of a supply roll for providing the flexible substrate and a take-up roll for storing the flexible substrate; a second chamber adapted for housing one of a supply roll for providing the flexible substrate and a take-up roll for storing the flexible substrate; a maintenance zone between the first chamber and the second chamber; and a first process chamber for depositing material on the flexible substrate, wherein the second chamber is provided between the maintenance zone and the first process chamber. The maintenance zone allows for maintenance access to at least one of the first chamber and the second chamber.
Abstract:
A vapor deposition apparatus is provided. The vapor deposition apparatus includes a tank for providing a liquefied material, a first unit having an alterable first volume, the first unit including a first actuator and including a first line to be in fluid communication with the tank. Further, the vapor deposition apparatus includes a second unit having an alterable second volume, the second unit including a second actuator and including a second line to be in fluid communication with the tank. The vapor deposition apparatus includes an evaporation arrangement, the evaporation arrangement being in fluid communication with the first unit and the second unit. The first actuator and the second actuator are configured to alternatingly provide a force to the alterable first volume and the alterable second volume for providing the liquefied material to the evaporation arrangement.
Abstract:
A method of coating a flexible substrate in a roll-to-roll deposition system is described. The method includes unwinding the flexible substrate from an unwinding roll, the flexible substrate having a first coating on a first main side thereof; measuring a lateral positioning of the first coating while guiding the flexible substrate to a coating drum; adjusting a lateral position of the flexible substrate on the coating drum depending on the measured lateral positioning of the first coating; and depositing a second coating on the flexible substrate, particularly on a second main side of the flexible substrate opposite the first main side. Further described is a vacuum deposition apparatus for conducting the methods described herein.