Abstract:
In an embodiment, a system is provided in which the private key is managed in hardware and is not visible to software. The system may provide hardware support for public key generation, digital signature generation, encryption/decryption, and large random prime number generation without revealing the private key to software. The private key may thus be more secure than software-based versions. In an embodiment, the private key and the hardware that has access to the private key may be integrated onto the same semiconductor substrate as an integrated circuit (e.g. a system on a chip (SOC)). The private key may not be available outside of the integrated circuit, and thus a nefarious third party faces high hurdles in attempting to obtain the private key.
Abstract:
Techniques are disclosed relating a computer system in a power-down state receiving a communication from a remote computer system and performing a task indicated by the communication. The computer system in a power-down state performs the task without transitioning from the power-down state into a power-up state. Exemplary tasks performed in the power-down state include uploading one or more files to a remote computer system, downloading one or more files from a remote computer system, deleting one or more files from the computer system, accessing input/output devices, disabling the computer system, and performing a memory check on the computer system.
Abstract:
A secure ranging system can use a secure processing system to deliver one or more ranging keys to a ranging radio on a device, and the ranging radio can derive locally at the system ranging codes based on the ranging keys. A deterministic random number generator can derive the ranging codes using the ranging key and one or more session parameters, and each device (e.g. a cellular telephone and another device) can independently derive the ranging codes and derive them contemporaneously with their use in ranging operations.
Abstract:
A method and apparatus for performing a secure boot of a computer system is disclosed. A computer system according to the disclosure includes an auxiliary processor and a main processor. The boot process includes initially booting the auxiliary processor. The auxiliary processor includes a non-volatile memory storing boot code for the main processor. The auxiliary processor may perform a verification of the boot code. Subsequent to verifying the boot code, the main processor may be released from a reset state. Once the main processor is no longer in the reset state, the boot code may be provided thereto. Thereafter, the boot procedure may continue with the main processor executing the boot code.
Abstract:
Embodiments of an apparatus and method are disclosed that may allow for managing power of a computing system. The apparatus may include a clock generation circuit, a bus interface unit, and a control circuit. The clock generation circuit may be configured to generate multiple clock signals. Each clock signal may provide a timing reference to different functional blocks within a device coupled to the communication bus. The bus interface unit may be configured to receive messages from the device via the communication bus. The messages may include a latency value and a request to activate a low power mode. The control circuit may be configured to deactivate one or more of the multiple clock signals dependent upon the latency value and multiple threshold values.
Abstract:
In an embodiment, a system is provided in which the private key is managed in hardware and is not visible to software. The system may provide hardware support for public key generation, digital signature generation, encryption/decryption, and large random prime number generation without revealing the private key to software. The private key may thus be more secure than software-based versions. In an embodiment, the private key and the hardware that has access to the private key may be integrated onto the same semiconductor substrate as an integrated circuit (e.g. a system on a chip (SOC)). The private key may not be available outside of the integrated circuit, and thus a nefarious third party faces high hurdles in attempting to obtain the private key.
Abstract:
Embodiments of a bridge unit and system are disclosed that may allow for processing fence commands send to multiple bridge units. Each bridge unit may process a respective portion of a plurality of transactions generated by a master unit. The master unit may be configured to send a fence command to each bridge unit, which may stall the processing of the command. Each bridge unit may be configured to determine if all transactions included in its respective portion of the plurality of transactions has completed. Once each bridge unit has determined that all other bridge units have received the fence command and that all other bridge units have completed their respective portions of the plurality of transactions that were received prior to receiving the fence command, all bridge units may execute the fence command.
Abstract:
Embodiments of an apparatus and method are disclosed that may allow for managing power of a computing system. The apparatus may include a clock generation circuit, a bus interface unit, and a control circuit. The clock generation circuit may be configured to generate multiple clock signals. Each clock signal may provide a timing reference to different functional blocks within a device coupled to the communication bus. The bus interface unit may be configured to receive messages from the device via the communication bus. The messages may include a latency value and a request to activate a low power mode. The control circuit may be configured to deactivate one or more of the multiple clock signals dependent upon the latency value and multiple threshold values.
Abstract:
In an embodiment, a peripheral interface controller may include an inline cryptographic engine which may encrypt data being sent over a peripheral interface and decrypt data received from the peripheral interface. The encryption may be transparent to the device connected to the peripheral interface that is receiving/supplying the data. In an embodiment, the peripheral interface controller is included in a system on a chip (SOC) that also includes a memory controller configured to couple to a memory. The memory may be mounted on the SOC in a chip-on-chip or package-on-package configuration. The unencrypted data may be stored in the memory for use by other parts of the SOC (e.g. processors, on-chip peripherals, etc.). The keys used for the encryption/decryption of data may remain within the SOC.
Abstract:
In an embodiment, a system is provided in which the private key is managed in hardware and is not visible to software. The system may provide hardware support for public key generation, digital signature generation, encryption/decryption, and large random prime number generation without revealing the private key to software. The private key may thus be more secure than software-based versions. In an embodiment, the private key and the hardware that has access to the private key may be integrated onto the same semiconductor substrate as an integrated circuit (e.g. a system on a chip (SOC)). The private key may not be available outside of the integrated circuit, and thus a nefarious third party faces high hurdles in attempting to obtain the private key.