Abstract:
Embodiments of a bridge unit and system are disclosed that may allow for processing fence commands send to multiple bridge units. Each bridge unit may process a respective portion of a plurality of transactions generated by a master unit. The master unit may be configured to send a fence command to each bridge unit, which may stall the processing of the command. Each bridge unit may be configured to determine if all transactions included in its respective portion of the plurality of transactions has completed. Once each bridge unit has determined that all other bridge units have received the fence command and that all other bridge units have completed their respective portions of the plurality of transactions that were received prior to receiving the fence command, all bridge units may execute the fence command.
Abstract:
Embodiments of a bridge unit and system are disclosed that may allow for processing fence commands send to multiple bridge units. Each bridge unit may process a respective portion of a plurality of transactions generated by a master unit. The master unit may be configured to send a fence command to each bridge unit, which may stall the processing of the command. Each bridge unit may be configured to determine if all transactions included in its respective portion of the plurality of transactions has completed. Once each bridge unit has determined that all other bridge units have received the fence command and that all other bridge units have completed their respective portions of the plurality of transactions that were received prior to receiving the fence command, all bridge units may execute the fence command.