Abstract:
A method of forming a unitary sintered body can include cutting a first portion and a second portion from a sheet of feedstock. The feedstock can include ceramic or metallic particles suspended in a binder. The first portion can be positioned in contact with the second portion and the portions can be sintered together to form the unitary body.
Abstract:
The disclosure provides an aluminum alloy including having varying ranges of alloying elements. In various aspects, the alloy has a wt % ratio of Zn to Mg ranging from 4:1 to 7:1. The disclosure further includes methods for producing an aluminum alloy and articles comprising the aluminum alloy.
Abstract:
A component for an electronic device can include a pre-formed substrate comprising a first metal and an additively manufactured portion bonded to the pre-formed substrate. The additively manufactured portion can include a first portion comprising a second metal and defining a volume, the first portion having a first value of a material property, and a second portion disposed in the volume, the second portion having a second value of the material property that is different from the first value.
Abstract:
The disclosure provides an aluminum alloy including iron (Fe) in an amount of 0.10 wt % to 0.50 wt %; silicon (Si) in an amount of 0.50 wt % to 1.00 wt %; magnesium (Mg) in amount of 0.50 wt % to 0.90 wt %; one of manganese (Mn) or chromium (Cr) in amount from 0.040 to 0.500 wt %; additional non-aluminum (Al) elements in an amount not exceed 3.5 wt %; and the remaining wt % being Al and incidental impurities, wherein the alloy has a Mg/Si ratio of equal to or greater than 0.90.
Abstract:
Anodized substrates having laser markings and methods for forming the same are described. According to some embodiments, the methods involve forming a feature on a substrate using a laser prior to anodizing. The laser energy and pulse width can be chosen so as to provide a particular topology to a surface of the substrate that, after anodizing, absorbs incoming light and imparts a dark appearance to the feature. In some cases, the methods involve forming a coarse oxide layer, which is removed prior to anodizing. Since the laser marking is performed prior to anodizing, the anodized substrates are free from laser-induced cracks, thereby making the anodized substrates more corrosion resistant than conventional laser-marked anodized substrates. The techniques are well suited for forming features on consumer products that may be exposed to water or other corrosion-inducing agents.
Abstract:
The disclosure provides an aluminum alloy including having varying ranges of alloying elements. In various aspects, the alloy has a wt % ratio of Zn to Mg ranging from 4:1 to 7:1. The disclosure further includes methods for producing an aluminum alloy and articles comprising the aluminum alloy.
Abstract:
An aluminum alloy that may include 0.45 to 0.85 wt % Si, 0.15 to 0.25 wt % Cu, 0.40 to 0.80 wt % Fe, 1.20 to 1.65 wt % Mg, and 0.80 to 1.10 wt % Mn, where the balance is aluminum and incidental impurities. The alloy can include used beverage can (UBC) scrap.
Abstract:
The disclosure provides an aluminum alloy including having varying ranges of alloying elements. In various aspects, the alloy has a wt % ratio of Zn to Mg ranging from 4:1 to 7:1. The disclosure further includes methods for producing an aluminum alloy and articles comprising the aluminum alloy.
Abstract:
The disclosure provides an aluminum alloy including having varying ranges of alloying elements. In various aspects, the alloy has a wt % ratio of Zn to Mg ranging from 4:1 to 7:1. The disclosure further includes methods for producing an aluminum alloy and articles comprising the aluminum alloy.
Abstract:
Methods of forming anodic oxide coatings on certain high strength aluminum alloys are described. Methods involve preventing or reducing the formation of interface-weakening species, such as zinc-sulfur compounds, at an interface between an anodic oxide coating and underlying aluminum alloy substrate during anodizing. In some embodiments, a micro-alloying element is added in very small amounts to an aluminum alloy substrate to prevent enrichment of zinc at the anodic oxide and substrate interface, thereby reducing or preventing formation of the zinc-sulfur interface-weakening species. In some embodiments, a sulfur-scavenging species is added to an aluminum alloy substrate to prevent sulfur from a sulfuric acid anodizing bath from binding with zinc and forming the zinc-sulfur interface-weakening species at the anodic oxide and substrate interface. In some embodiments, a micro-alloying element and a sulfur-scavenging species are added to an aluminum alloy substrate. Resultant anodic oxide coatings have minimal or no discoloration.