Abstract:
A 3D printed metallic structure can include an elongated body defining an orifice, the elongated body divisible into a plurality of sectioned elements. The plurality of sectioned elements configured for use a housing or enclosures of electronic devices.
Abstract:
The disclosure provides an aluminum alloy may include iron (Fe) of at least 0.10 wt %, silicon (Si) of at least 0.35 wt %, and magnesium (Mg) of at least 0.45 wt %, manganese (Mn) in amount of at least 0.005 wt %, and additional elements, the remaining wt % being Al and incidental impurities.
Abstract:
Anodic oxide coatings and methods for forming anodic oxide coatings on metal alloy substrates are disclosed. Methods involve post-anodizing processes that improve the appearance of the anodic oxide coating or increase the strength of the underlying metal alloy substrates. In some embodiments, a diffusion promoting process is used to promote diffusion of one or more types of alloying elements enriched at an interface between the anodic oxide coating and the metal alloy substrate away from the interface. The diffusion promoting process can increase an adhesion strength of the anodic oxide film to the metal alloy substrate and reduce an amount of discoloration due to the enriched alloying elements. In some embodiments, a post-anodizing age hardening process is used to increase the strength of the metal alloy substrate and to improve cosmetics of the anodic oxide coatings.
Abstract:
Sealed anodic coatings that are resistant to leaching of nickel and nickel-containing products and methods for forming the same are described. Methods involve post-sealing thermal processes to remove at least some of the leachable nickel from the sealed anodic coatings. In some embodiments, the post-sealing thermal processes involve immersing the sealed anodic coating within a heated solution so as to promote diffusion of the leachable nickel out of the sealed anodic coatings and into the heated solution. The resultant sealed anodic coating is pre-leached of nickel and is therefore well suited for many consumer product applications. In some embodiments, a post-sealing thermal process is used to further hydrate and seal the sealed anodic coating, thereby repairing structural defects within the sealed anodic coating.
Abstract:
This disclosure relates to rapid and repeatable tests that can be used to evaluate the interfacial adhesion of coatings to substrates. In particular embodiments, tests are used to assess the resistance of anodic oxides to delamination from aluminum substrates. The tests can be conducted using standard hardness test equipment such as a Vickers indenter, and yield more controlled, repeatable results than a large sample of life-cycle tests such as rock tumble tests. In particular embodiments, the tests involve forming an array of multiple indentations within the substrate such that stressed regions where the coating will likely delaminate are formed and evaluated.
Abstract:
An aluminum alloy that may include 0.45 to 0.85 wt % Si, 0.15 to 0.25 wt % Cu, 0.40 to 0.80 wt % Fe, 1.20 to 1.65 wt % Mg, and 0.80 to 1.10 wt % Mn, where the balance is aluminum and incidental impurities. The alloy can include used beverage can (UBC) scrap.
Abstract:
This disclosure relates to rapid and repeatable tests that can be used to evaluate the interfacial adhesion of coatings to substrates. In particular embodiments, tests are used to assess the resistance of anodic oxides to delamination from aluminum substrates. The tests can be conducted using standard hardness test equipment such as a Vickers indenter, and yield more controlled, repeatable results than a large sample of life-cycle tests such as rock tumble tests. In particular embodiments, the tests involve forming an array of multiple indentations within the substrate such that stressed regions where the coating will likely delaminate are formed and evaluated.
Abstract:
Anodic oxide coatings and methods for forming anodic oxide coatings on metal alloy substrates are disclosed. Methods involve post-anodizing processes that improve the appearance of the anodic oxide coating or increase the strength of the underlying metal alloy substrates. In some embodiments, a diffusion promoting process is used to promote diffusion of one or more types of alloying elements enriched at an interface between the anodic oxide coating and the metal alloy substrate away from the interface. The diffusion promoting process can increase an adhesion strength of the anodic oxide film to the metal alloy substrate and reduce an amount of discoloration due to the enriched alloying elements. In some embodiments, a post-anodizing age hardening process is used to increase the strength of the metal alloy substrate and to improve cosmetics of the anodic oxide coatings.
Abstract:
A 3D printed metallic structure can include an elongated body defining an orifice, the elongated body divisible into a plurality of sectioned elements. The plurality of sectioned elements configured for use a housing or enclosures of electronic devices.
Abstract:
The disclosure provides an aluminized composite including a base material. The aluminized composite may also include a diffusion layer disposed over the base material. The aluminized composite may further include an aluminum material disposed over the diffusion layer.