Abstract:
In a device for releasing a securing screw for a unit in a housing, in particular a pinion unit in a steering gear of a motor vehicle, the securing screw is connected via an external thread to an internal thread in the housing, wherein the securing screw is provided with a latching device, which has latching levers disposed distributed on the circumference of the securing screw, each of which said latching levers is provided with latching lugs disposed on the free ends of the latching levers. The latching lugs latch into teething gaps of a teething geometry of the housing. The latching devices can be connected to a tool in order to release the latching levers having the latching lugs from the latched position by means of a radially inwardly directed movement of the latching levers.
Abstract:
In a device for releasing a securing screw for a unit in a housing, in particular a pinion unit in a steering gear of a motor vehicle, the securing screw is connected via an external thread to an internal thread in the housing, wherein the securing screw is provided with a latching device, which has latching levers disposed distributed on the circumference of the securing screw, each of which said latching levers is provided with latching lugs disposed on the free ends of the latching levers. The latching lugs latch into toothing gaps of a toothing geometry of the housing. The latching device can be connected to a tool in order to release the latching levers having the latching lugs from the latched position by means of a radially inwardly directed movement of the latching levers.
Abstract:
The invention relates to a microorganism, of the order of lactic acid bacteria or analog, fragment, derivative, mutant or combination thereof. Said microorganism, or analog, fragment, derivative, mutants or combinations thereof can be co-aggregated with at least Staphylococcus aureus or Pseudomonas aeruginosa.
Abstract:
The invention relates to an isolated, genetically modified, living non-mammal organism, having increased HMG-CoA-reductase activity compared to the wild type, and having reduced C24-methyltransferase and/or delta22-desaturase activity compared to the wild type. The invention is characterized in that the organism has increased dehydrocholesterol-delta70-reductase activity compared to the wild type. The invention further relates to different uses of such an organism, to a test kit comprising such an organism, and to a membrane extract of such an organism.
Abstract:
The invention relates to an isolated genetically modified microorganism in which the gene IDH1 and at least one of the genes SDH2 and DIC1 are under the control of a first promoter that is repressed to a growth culture medium by means of a cultivation additive and is active in the absence of the cultivation additive. The genes that are part of the group comprising “PYC1, ACS1, CIT1, ACO1, ICL1, MSL1, and CIT2, optionally also MDH3” are constitutively active. The invention further relates to uses of such a microorganism, especially for producing succinic acid.
Abstract:
The invention provides an isolated genetically modified non-mammalian organism, wherein the activity of acyl-CoA: sterol acyltransferase/sterol O-acyltransferase (EC 2.3.1.26) and/or diacylglycerol acyltransferase/diacylglycerol O-acyltranferase (EC 2.3.1.20) and/or lecithin cholesterol acyl transferase/phospholipid: diacylglycerol acyltransferase (EC 2.3.1.158) and/or acyl CoA-wax alcohol acyltransferase (EC 2.3.1.75) is reduced or abolished in comparison with a corresponding wildtype organism, methods of use of such an organism, shuttle vehicles for making such an organism and methods for producing such an organism.
Abstract:
The invention describes a microorganism of the order of lactic acid bacteria or an analog, fragment, derivative, mutant or combination thereof, wherein the microorganism, or analog, fragment, derivative, mutant or combination thereof can coaggregate with Streptococcus pyogenes.
Abstract:
The present invention relates to a yeast cell, wherein said cell comprises a functional gene coding for soluble hydroxymethylglutaryl-coenzyme-A (HMG-CoA) reductase; one or more gene(s) coding for steryl acyltransferase(s) in said cell are defective or deleted; and said cell is prototrophic for at least histidine, leucine or uracil. Moreover, the present invention relates to the use of said cell for the production of one or more terpene(s). Further, the present invention relates to methods of generating said cell and the production of one or more terperne(s) and a pharmaceutical or cosmetically composition, a lubricant or transformer oil comprising said terpene(s).
Abstract:
The invention relates to an isolated, genetically modified microorganism, wherein compared to the wild type a) the idh1 and idp1 genes have been deleted or inactivated, and/or b) the sdh2 and sdh1 genes have been deleted or inactivated, and/or c) the PDC2 gene has been deleted or inactivated or is under the control of a promoter which can be suppressed or induced by exposure of the microorganism using an inductor substance, and/or d) one or more genes from the group consisting of ICL1, MLS1, ACS1 and MDH3 has been replaced or supplemented by a corresponding foreign gene or corresponding foreign genes from Crabtree-negative organisms, and to the uses thereof.
Abstract:
The invention relates to an isolated genetically modified microorganism in which the gene IDH1 and at least one of the genes SDH2 and DIC1 are under the control of a first promoter that is repressed to a growth culture medium by means of a cultivation additive and is active in the absence of the cultivation additive. The genes that are part of the group comprising “PYC1, ACS1, CIT1, ACO1, ICL1, MSL1, and CIT2, optionally also MDH3” are constitutively active. The invention further relates to uses of such a microorganism, especially for producing succinic acid.