Abstract:
Processes for making ivalent germanium and tin compounds are provided. The divalent germanium and tin compounds have been found to be efficient catalysts for the formation of polyurethanes.
Abstract:
Divalent germanium and tin compounds are provided. The divalent germanium and tin compounds have been found to be efficient catalysts for the formation of polyurethanes. Methods for making polyurethanes using the catalysts are also provided.
Abstract:
A pump body is pre-compressed by expanding a displacement plug in a cavity to pre-compress a portion of a pump body comprising a piston bore, an inlet bore and an outlet bore spaced from said cavity, and connected in a pump assembly. A fluid pump assembly is made up of a plurality of pump bodies connected side by side between opposing end plates with a plurality of fasteners tightened to compress the pump bodies between the end plates, wherein each pump body comprises a piston bore, an inlet bore, an outlet bore and an expanded displacement plug in a cavity; and wherein the expanded displacement plug applies a pre-compressive force at the cavity on each of the pump bodies.
Abstract:
Efficient sequence specific gene silencing is possible through the use of siRNA technology. By selecting particular siRNAs by rational design, one can maximize the generation of an effective gene silencing reagent, as well as methods for silencing genes. Methods, compositions, and kits generated through rational design of siRNAs are disclosed.
Abstract:
Efficient sequence specific gene silencing is possible through the use of siRNA technology. By selecting particular siRNAs by rational design, one can maximize the generation of an effective gene silencing reagent, as well as methods for silencing genes. Methods, compositions, and kits generated through rational design of siRNAs are disclosed including those directed to nucleotide sequences for CDKN1B.
Abstract:
Efficient sequence specific gene silencing is possible through the use of siRNA technology. By selecting particular siRNAs by rational design, one can maximize the generation of an effective gene silencing reagent, as well as methods for silencing genes. Methods, compositions, and kits generated through rational design of siRNAs are disclosed including those directed to nucleotide sequences for DGAT2.
Abstract:
Efficient sequence specific gene silencing is possible through the use of siRNA technology. By selecting particular siRNAs by rational design, one can maximize the generation of an effective gene silencing reagent, as well as methods for silencing genes. Methods, compositions, and kits generated through rational design of siRNAs are disclosed including those directed to nucleotide sequences for CTNNB1.
Abstract:
Efficient sequence specific gene silencing is possible through the use of siRNA technology. By selecting particular siRNAs by rational design, one can maximize the generation of an effective gene silencing reagent, as well as methods for silencing genes. Methods, compositions, and kits generated through rational design of siRNAs are disclosed.
Abstract:
Efficient sequence specific gene silencing is possible through the use of siRNA technology. By selecting particular siRNAs by rational design, one can maximize the generation of an effective gene silencing reagent, as well as methods for silencing genes. Methods, compositions, and kits generated through rational design of siRNAs are disclosed including those directed to nucleotide sequences for SOD1.
Abstract:
Efficient sequence specific gene silencing is possible through the use of siRNA technology. By selecting particular siRNAs by rational design, one can maximize the generation of an effective gene silencing reagent, as well as methods for silencing genes. Methods, compositions, and kits generated through rational design of siRNAs are disclosed.