Abstract:
The present disclosure provides optimized coding and decoding methods for polar codes and corresponding encoder and decoder. The coding method comprises: providing to-be-encoded input bits that include free bits and remaining bits; dividing the remaining bits into a plurality of fragments; providing a connection code; connecting one fragment of the remaining bits to the connection code to thereby form a connected fragment, while the remaining being still unconnected fragments; performing polarization coding to the free bits, the connected fragment, and the unconnected fragments to obtain the polar codes.
Abstract:
Methods and apparatuses for use in a low cost machine type communication user equipment, wherein the low cost machine type communication user equipment communicates with a legacy base station, are provided. The method comprises adjusting at least one parameter relating to scheduling such that the legacy base station is to schedule the low cost machine type communication user equipment with a transmission block size less than a predefined size. The method also comprises reporting the adjusted at least one parameter to the legacy base station. With the methods and apparatuses of the present disclosure, it is possible for the low cost machine type communication use equipment to operate in the coverage area of the legacy base station.
Abstract:
A method is provided for determining delay between random access channel and downlink control channel in random access procedures. The method comprises receiving from a base station, by a user equipment, information related to one or more delay(s) between a random access channel and one or more repetition period(s) of a downlink control channel for the user equipment; sending to the base station, by the user equipment, the random access channel transmitted in a repetitive form; receiving, by the user equipment, the one or more repetition period(s) of the downlink control channel, wherein each of the one or more repetition period(s) of the downlink control channel is transmitted according to a corresponding one of the delay(s); and determining, by the user equipment, the one or more delay(s) based at least on the information related to the delay(s).
Abstract:
The present invention relates to a method, in a base station of a MTC based communication system, of configuring bandwidth for a MTC user equipment, wherein bandwidth of the MTC user equipment is smaller than system bandwidth for MTC, the method comprising the steps of: receiving a first message from the MTC user equipment, the first message indicating an offset of bandwidth selected by the MTC user equipment according to a predetermined selection policy relative to the system bandwidth, wherein the selected bandwidth covers center frequency band of the system bandwidth; determining the bandwidth selected by the MTC user equipment according to the first message. According to the invention, the system bandwidth for MTC and the bandwidth of the MTC user equipments can be asymmetrically increased, while extending the capacity of MTC by allocating wider bandwidth. The cost for the user equipments in a MTC based communication system could be saved by reserving the bandwidth of the MTC user equipments or by reducing the increment of the bandwidth of the MTC user equipments while increasing the system bandwidth for MTC.
Abstract:
The present invention provides a method for data transmission in a machine type communication device terminal, comprising: performing the following when the terminal receives cell common message: A. receiving first indication information from an EPDCCH on a first resource block, the first indication information indicating a second resource block for transmitting the cell common message; B. receiving the cell common message from a PDSCH on the second resource block; performing the following when the terminal receives downlink data: I. receiving second indication information from EPDCCH on a third resource block; II. detecting whether DCI information transmitted to the terminal exists in the second indication information, and if the DCI information transmitted to the terminal exists, II-1. decoding information of a fourth resource block in the DCI information; II-2. receiving the downlink data transmitted from the base station to the terminal from the PDSCH on the fourth resource block.
Abstract:
One embodiment of the present disclosure relates to a method for random access in a base station supporting communication with at least one CE-MTC UE. The method comprises: receiving from a user equipment, repetition transmissions of a first message including a random access preamble; repeatedly transmitting to the user equipment a second message including a random access response, RAR, wherein the second message has a characteristic dependent upon a first repetition level. Another embodiment of the present invention also relates to corresponding method for random access in a user equipment. According to an aspect of the present disclosure, there are provided corresponding devices.
Abstract:
Embodiments of the present disclosure relate to a method and apparatus for data processing in a communication system. For example, a method comprises pre-processing received data encoded with a polar code; performing a first decoding of the pre-processed data to obtain output bits; in response to decoding failure of the first decoding, bit-flipping a portion of information bits of the output bits to obtain a first additional frozen bit; and performing a second decoding based on the first additional frozen bit and the pre-processed data. Embodiments of the present disclosure further provide a communication device capable of implementing the above method.
Abstract:
Embodiments of the present disclosure relate to a communication method and a communication device. There is provided a communication method implemented at a first device. The method comprises: determining quantities of information of units in control information; mapping, based on the quantities of information of the units and reliabilities of subchannels for carrying the control information, the units to a subchannels; and transmitting the control information to a second device via the subchannel. There is also provided a communication method implemented at a second device, as well as corresponding first device and second device.
Abstract:
Embodiments of the present disclosure relate to a method and apparatus for data processing in a communication system. For example, a method comprises pre-processing received data encoded with a polar code; performing a first decoding of the pre-processed data to obtain output bits; in response to decoding failure of the first decoding, bit-flipping a portion of information bits of the output bits to obtain a first additional frozen bit; and performing a second decoding based on the first additional frozen bit and the pre-processed data. Embodiments of the present disclosure further provide a communication device capable of implementing the above method.
Abstract:
The present disclosure provides optimized coding and decoding methods for polar codes and corresponding encoder and decoder. The coding method comprises: providing to-be-encoded input bits that include free bits and remaining bits; dividing the remaining bits into a plurality of fragments; providing a connection code; connecting one fragment of the remaining bits to the connection code to thereby form a connected fragment, while the remaining being still unconnected fragments; performing polarization coding to the free bits, the connected fragment, and the unconnected fragments to obtain the polar codes.