Abstract:
A small-spot imaging, spectrometry instrument for measuring properties of a sample has a polarization-scrambling element, such as a birefringent plate depolarizer, incorporated between the polarization-introducing components of the system, such as the beamsplitter, and the microscope objective of the system. The plate depolarizer varies polarization with wavelength, and may be a Lyot depolarizer with two plates, or a depolarizer with more than two plates (such as a three-plate depolarizer). Sinusoidal perturbation in the resulting measured spectrum can be removed by data processing techniques or, if the depolarizer is thick or highly birefringent, the perturbation may be narrower than the wavelength resolution of the instrument.
Abstract:
Achromatic optics may be employed in spectroscopic measurement systems. The achromatic optics comprises a spherical mirror receiving a beam of radiation in a direction away from its axis and a pair of lenses: a positive lens and a negative meniscus lens. The negative meniscus lens corrects for the spherical aberration caused by off-axis reflection from the spherical mirror. The positive lens compensates for the achromatic aberration introduced by the negative lens so that the optics, as a whole, is achromatic over visible and ultraviolet wavelengths. Preferably, the two lenses combined have zero power or close to zero power. By employing a spherical mirror, it is unnecessary to employ ellipsoidal or paraboloidal mirrors with artifacts of diamond turning which limit the size of the spot of the sample that can be measured in ellipsometry, reflectometry or scatterometry.
Abstract:
A wafer measurement apparatus (10, 110) and method for measuring a film thickness property of a wafer (30) that does not require a water bath or complicated wafer handling apparatus. The apparatus includes a chuck (16) having an upper surface (20) for supporting the wafer, and a perimeter (18). Also included is a metrology module (50) for measuring one or more film thickness properties. The metrology module is arranged adjacent the chuck upper surface and has a measurement window (60) with a lower surface (64) arranged substantially parallel to the chuck upper surface, thereby defining an open volume (68). The apparatus includes a water supply system in fluid communication with the open volume via nozzles (70) for flowing water through and back-filling the volume in a manner that does not produce bubbles within the volume. A catchment (40) surrounding the chuck may be used to catch water flowing out of the volume. Methods of performing measurements of one or more wafer film properties are also described.
Abstract:
An optical measurement system for evaluating a sample has a motor-driven rotating mechanism coupled to an azimuthally rotatable measurement head, allowing the optics to rotate with respect to the sample. A polarimetric scatterometer, having optics directing a polarized illumination beam at non-normal incidence onto a periodic structure on a sample, can measure optical properties of the periodic structure. An E-O modulator in the illumination path can modulate the polarization. The head optics collect light reflected from the periodic structure and feed that light to a spectrometer for measurement. A beamsplitter in the collection path can ensure both S and P polarization from the sample are separately measured. The measurement head can be mounted for rotation of the plane of incidence to different azimuthal directions relative to the periodic structures. The instrument can be integrated within a wafer process tool in which wafers may be provided at arbitrary orientation.
Abstract:
The measurement spot size of small-spot reflectometers, ellipsometers, and similar instruments can be reduced by placing an optical fiber along the optical path of the instrument, such as between an illumination source and a sample or the sample and a detector. The angular range of the probe beam can be adjusted to be less than a natural numerical aperture of the optical fiber. A multimode fiber can be used, which can have a controllable amount of bend or coil, such that rays entering the fiber at larger angles of incidence are attenuated more than rays entering at shallow angles of incidence. Light passing through the fiber can be selectively attenuated and partially mixed to reduce the presence of secondary maxima falling outside the measurement spot. Minimizing these secondary maxima can improve the amount of light measured by the detector that is reflected from inside the measurement spot.
Abstract:
A calibration method suitable for highly precise and highly accurate surface metrology measurements is described. In preferred embodiments, an optical inspection tool including a movable optics system is characterized in terms of position and wavelength dependent quantities over a range of motion. Once the position-dependant quantities are determined at various wavelengths and positions, they are stored and used to interpret data from test wafers having an unknown metrology. Free of position-dependent variations and other information pertaining to the measurement system, the accuracy of the resulting wafer measurement more closely matches the precision of the tool than existing techniques. In particular embodiments, a portion of the characterization of the optical system is accomplished by using tilted black glass to provide a non-reflective reference.
Abstract:
This invention is an apparatus for imaging metrology, which in particular embodiments may be integrated with a processor station such that a metrology station is apart from but coupled to a process station. The metrology station is provided with a first imaging camera with a first field of view containing the measurement region. Alternate embodiments include a second imaging camera with a second field of view. Preferred embodiments comprise a broadband ultraviolet light source, although other embodiments may have a visible or near infrared light source of broad or narrow optical bandwidth. Embodiments including a broad bandwidth source typically include a spectrograph, or an imaging spectrograph. Particular embodiments may include curved, reflective optics or a measurement region wetted by a liquid. In a typical embodiment, the metrology station and the measurement region are configured to have 4 degrees of freedom of movement relative to each other.
Abstract:
A spectroscopic ellipsometer having a multiwavelength light source, spectrometer (or wavelength-scanning monochromator and photodetector), a polarizer and polarization analyzer, and one or more objectives in the illumination and collection light paths, further comprises a stationary polarization modulator that modulates the light polarization versus wavelength. Modulator can be an optically active crystal rotating the linear polarization plane by a different angle for each wavelength or a non-achromatic waveplate retarder that varies the relative phase delay of the polarization components periodically over wavelength. The measured spectrum can be used to characterize selected features or parameters of a sample, e.g. by comparison with one or more theoretical spectra.
Abstract:
An optical filter for the selective attenuation of specific wavelengths of light includes at least one spectrally dispersive element, such as a diffraction grating or prism, in combination with an optical filter. A dispersive element separates broadband light into a constituent wavelength spread in angle space. An optical filter, or filter array, can block and/or attenuate specific wavelengths or wavelength ranges of interest while the light is angularly dispersed. A second dispersive element can recombine this filtered, separated wavelength fan of light into a coaxial broadband beam having a smoother intensity profile than the unfiltered beam.
Abstract:
A method and system for performing reflectance measurements of a sample using radiation having UV frequency components (preferably in a broad UV band) and visible frequency components (preferably in a broad band). Preferably, two detectors simultaneously receive a sample beam reflected from the sample surface. One detector generates a signal indicative of the sample beam components in the UV band and the other detector generates a signal indicative of the sample beam components in the visible band. By processing these two signals, the invention enables accurate measurement of the thickness of a very thin film on the sample. Preferably, the system determines a single effective wavelength for the UV radiation incident on the first detector and a single effective wavelength for the visible radiation incident on the second detector. Embodiments of the system can also measure reflectance spectra and refractive indices, and can determine lithographic exposure times. Preferred embodiments include an objective lens assembly having a pupil stop with an entrance portion with one or more relatively large apertures therethrough and an exit portion with one or more relatively small apertures therethrough. Illuminating radiation passes through the relatively large apertures before reflecting from the sample, and then passes through the relatively small apertures after reflecting from the sample. This design and pupil stop orientation dramatically increases the insensitivity of the system to ripple on the sample surface.