Abstract:
Embodiments of the present disclosure generally relate an interconnect formed on a substrate and a method of forming the interconnect thereon. In an embodiment, a via and trench in a stack formed on the substrate. A bottom of the via is pre-treated using a first pre-treatment procedure. A sidewall of the via is pre-treated using a second pre-treatment procedure. A first metal fill material of a first type is deposited on the stack, in the via. A second metal fill material of a second type is deposited on the stack, in the trench.
Abstract:
Interconnects and methods for forming interconnects are described and disclosed herein. The interconnect contains a stack formed on a substrate having a via and a trench formed therein, a first metal formed from a first material of a first type deposited in the via, and a second metal formed from a second material of a second type deposited in the trench.
Abstract:
The present disclosure generally relates to methods for processing of substrates, and more particularly relates to methods for forming a metal gapfill. In one implementation, the method includes forming a metal gapfill in an opening using a multi-step process. The multi-step process includes forming a first portion of the metal gapfill, performing a sputter process to form one or more layers on one or more side walls, and growing a second portion of the metal gapfill to fill the opening with the metal gapfill. The metal gapfill formed by the multi-step process is seamless, and the one or more layers formed on the one or more side walls seal any gaps or defects between the metal gapfill and the side walls. As a result, fluids utilized in subsequent processes do not diffuse through the metal gapfill.
Abstract:
Methods for etching a substrate are provided herein. In some embodiments, a method for etching a substrate disposed within a processing volume of a process chamber includes: (a) exposing a first layer disposed atop the substrate to a first gas comprising tungsten chloride (WCIx) for a first period of time and at a first pressure, wherein x is 5 or 6; (b) purging the processing volume of the first gas using an inert gas for a second period of time; (c) exposing the substrate to a hydrogen-containing gas for a third period of time to etch the first layer after purging the processing volume of the first gas; and (d) purging the processing volume of the hydrogen-containing gas using the inert gas for a fourth period of time.