Abstract:
The process is described for recycling a heat-treated solid article including a fluorinated polymer having a fluorinated polymer backbone chain and a plurality of groups represented by formula —SO3Z, wherein Z is independently a hydrogen, an alkali-metal cation, or a quaternary ammonium cation. The heat-treated solid article was previously heated at a temperature of at least 100° C. The process includes heating the heat-treated solid article in the presence of water and base to form a fluorinated polymer salt solution, allowing the fluorinated polymer salt solution to cool, and converting the fluorinated polymer salt solution to fluorinated polymer solution wherein Z is hydrogen by cation exchange.
Abstract:
The process produces a fluorinated olefin from a fluorinated copolymer having at least one of sulfonic acid groups, carboxylic acid groups, or salts thereof. The process includes heating the fluorinated copolymer at a first temperature not more than 450° C. to decompose at least one of the sulfonic acid groups, carboxylic acid groups, or salts thereof to form a partially pyrolyzed intermediate and subsequently heating the partially pyrolyzed intermediate at a second temperature of at least 550° C. to produce the fluorinated olefin.
Abstract:
A fluoropolymer coating composition is described comprising an aqueous liquid medium, fluoropolymer particles dispersed in the aqueous liquid medium, and at least one aziridine compound. The aziridine compound comprises at least two aziridine groups (i.e. polyaziridine) or at least one aziridine group and at least one alkoxy silane group. In another embodiment, an article is described comprising a substrate wherein a surface of the substrate comprises a coating comprising fluoropolymer particles; and a reaction product of at least one aziridine compound comprising at least two aziridine groups or at least one aziridine group and at least one alkoxy silane group. The coating can be utilized as a primer for bonding a non-fluorinated substrate to a fluoropolymer film and/or the coating can be used as an (e.g. outer exposed) surface layer. In some embodiments, the article may be the (e.g. backside) film of a photovoltaic module.
Abstract:
The multilayer film serves as a laminate. In some embodiments, the film is a multilayered structure that, in its base form, encompasses an intermediate layer with first and second outer layer affixed to opposing sides of the intermediate layer. In some embodiments, the first outer layer is a semi-crystalline fluoropolymer. In some embodiments, the intermediate layer includes a polyester and the second outer layer is an olefinic polymer.
Abstract:
Described herein is a composition comprising a fluorothermoplastic polymer, wherein the fluorothermoplastic polymer is derived from: (a) 60-85 mol % tetrafluoroethene; (b) 2-12 mol % hexafluoropropene; (c) 10-30 mol % vinylidene fluoride; (d) 0.2 to 5 mol % of a bromine-containing monomer. Such compositions can be used in multilayer constructions in, for example, fuel hose applications.
Abstract:
Presently described are methods of making coating comprising aqueous fluoropolymer latex dispersions, aqueous fluoropolymer coating compositions, coated substrates, and (e.g. backside) films of photovoltaic cells. In one embodiment, the film comprises at least one fluoropolymer comprising repeat units derived from VF, VDF, or a combination thereof; inorganic oxide nanoparticles; and a compound that reacts with the repeat units derived from VF and VDF to crosslink the fluoropolymer and/or couple the fluoropolymer to the inorganic oxide nanoparticles. In another embodiment, the backside film comprises at least one fluoropolymer comprising repeat units derived from VF, VDF, or a combination thereof; and an amino-substituted organosilane ester or ester equivalent crosslinking compound.
Abstract:
The multilayer film serves as a laminate. In some embodiments, the film is a multilayered structure that, in its base form, encompasses an intermediate layer with first and second outer layer affixed to opposing sides of the intermediate layer. In some embodiments, the first outer layer is a semi-crystalline fluoropolymer. In some embodiments, the intermediate layer includes a polyester and the second outer layer is an olefinic polymer.
Abstract:
The present disclosure relates to a film usable for roll-to-roll processing of flexible electronic devices, the film comprising a composite material comprising a polymer and hexagonal boron nitride particles, wherein the hexagonal boron nitride particles comprise platelet-shaped hexagonal boron nitride particles. The present disclosure further relates to a process for producing said film, and to the use of said film.
Abstract:
Described herein is a composition comprising (i) a hydrofluorothermoplastic polymer, wherein the hydrofluorothermoplastic polymer is derived from: (a) 50-85 mol % tetrafluoroethene; (b) 2-15 mol % hexafluoropropene; (c) 10-35 mol % vinylidene fluoride; and (d) 0.1 to 5 mol % of a bromine-containing monomer; and (ii) a perhalogenated thermoplastic polymer. Such compositions can be used in multilayer constructions in, for example, fuel hose applications.
Abstract:
Described herein is method of making a multifunctional compound by starting with a H—(OR)n—P(═O)(ORh1)2 and performed a series of reactions to form a functionalized phosphorous compound such as CF2═CF—CFY2—(OR)n—P(═O)(OQ)2(VIIA) CF2X3CF═CF—(OR)n—P(═O)(OQ)2(VIIB), or CF2X3CHFC(═O)—(OR)n—P(═O)(OH)2(VIB) Where: R is a C1-C4 alkenyl group; X3 is F or —(OR)n—P(═O)(OQ)2; n is 0 or 1; Y2 is —F, —Cl, —Br, —H, or a fluoroalkyl group comprising 1 to 3 carbon atoms, wherein the fluoroalkyl group optionally comprises at least one of an ether linkage, Cl, Br, or I; and Q is an alkyl group having 1 to 6 carbon atoms and optionally comprising at least one catenated ether linkage, —Si(CH3)3, —Si(CH2CH3)3, —H, a metallic cation, or a quaternary ammonium cation can be disposed on a metal surface. Such compounds may be used in generating ionomeric polymers and/or applied onto metal substrates.