Abstract:
A fluoropolymer coating composition is described comprising an aqueous liquid medium, fluoropolymer particles dispersed in the aqueous liquid medium, and at least one aziridine compound. The aziridine compound comprises at least two aziridine groups (i.e. polyaziridine) or at least one aziridine group and at least one alkoxy silane group. In another embodiment, an article is described comprising a substrate wherein a surface of the substrate comprises a coating comprising fluoropolymer particles; and a reaction product of at least one aziridine compound comprising at least two aziridine groups or at least one aziridine group and at least one alkoxy silane group. The coating can be utilized as a primer for bonding a non-fluorinated substrate to a fluoropolymer film and/or the coating can be used as an (e.g. outer exposed) surface layer. In some embodiments, the article may be the (e.g. backside) film of a photovoltaic module.
Abstract:
An ionic diol has formula wherein R1 represents an alkyl group having from 6 to 18 carbon atoms; R2 and R3 independently represent alkyl groups having from 1 to 4 carbon atoms; R4 represents an alkylene group having from 2 to 8 carbon atoms; and R5 represents an alkylene group having from 1 to 8 carbon atoms. Antistatic polymers are formed by copolymerization of monomers including a diisocyanate, an ionic diol, a polyether diol, and at least one non-ionic diols. Methods of making the antistatic polyurethanes are also disclosed.
Abstract:
An antistatic article having an antistatic layer disposed on a substrate is disclosed herein. The antistatic layer is formed from a cationic copolymer, a non-cationic (meth)acrylic polymer, and a crosslinking agent. The cationic copolymer consists essentially of a cationic monomer, a hydrophobic monomer, a crosslinkable monomer, and an optional nitrogen-containing monomer. The substrate may comprise an optical film such as a multilayer optical film. Methods for making the antistatic article and display devices containing the antistatic article are also disclosed.
Abstract:
Uncured aqueous composition comprising a blend of (a) a sulfonated polyester, (b) at least one of a self-crosslinking acrylic or a self-crosslinking polyurethane binder, and (c) melamine-formaldehyde crosslinker, wherein the uncured aqueous composition has a free-formaldehyde content not greater than 0.04 part per million formaldehyde as determined by the Formaldehyde Test, and cured composition thereof. Compositions described herein are useful, for example, for making primed film for release liners applications.
Abstract:
Uncured aqueous composition comprising surfactant and a blend of (a) a first sulfonated polyester having a glass transition temperature not greater than 75° C. that is not sulfonated polyethylene naphthalate, (b) a second, sulfonated polyester that is a sulfonated polyethylene naphthalate, (c) melamine-formaldehyde crosslinker, and (d) an epoxy silane coupling agent; and cured composition thereof. Compositions described herein are useful, for example, for making primed film for release liners applications.
Abstract:
Primer layers for adhesion of a pressure sensitive adhesive material to a substrate are provided. The primer layer comprises a crosslinked polymer. In some embodiments, the primer layer has an atomic nitrogen content of greater than 6 wt %, and in some a ratio of atomic weight percent of oxygen to nitrogen of less than 3.0. In some embodiments the crosslinked polymer is the reaction product of an amine-functional base polymer such as a polyethylenimine (PEI) and a crosslinker, which may be a polyaziridine crosslinker. Also provided are two-layer constructions comprising the primer layer and a substrate layer; and tapes, such as flexographic plate mounting tapes, comprising the two-layer construction and a pressure sensitive adhesive layer.
Abstract:
Antistatic polymers include divalent segments having the formulas (I) and (II) and wherein R1 represents an alkyl group having from 1 to 18 carbon atoms, R2 and R3 represent alkyl groups having from 1 to 4 carbon atoms, R4 represents an alkylene group having from 2 to 8 carbon atoms, and R5 independently represents H or methyl. Methods of making antistatic polymers are also disclosed.
Abstract:
Antistatic polymers include divalent segments having the formulas (I) and (II) and wherein R1 represents an alkyl group having from 1 to 18 carbon atoms, R2 and R3 represent alkyl groups having from 1 to 4 carbon atoms, R4 represents an alkylene group having from 2 to 8 carbon atoms, and R5 independently represents H or methyl. Methods of making antistatic polymers are also disclosed.
Abstract:
Antistatic polymers include divalent segments represented by the formula wherein R1 represents an alkyl group having from 6 to 18 carbon atoms, R2 and R3 represent alkyl groups having from 1 to 4 carbon atoms, and R4 represents an alkylene group having from 2 to 8 carbon atoms. Methods of making antistatic polymers are also disclosed.
Abstract:
A fluoropolymer coating composition is described comprising an aqueous liquid medium, fluoropolymer particles dispersed in the aqueous liquid medium, and at least one aziridine compound. The aziridine compound comprises at least two aziridine groups (i.e. polyaziridine) or at least one aziridine group and at least one alkoxy silane group. In another embodiment, an article is described comprising a substrate wherein a surface of the substrate comprises a coating comprising fluoropolymer particles; and a reaction product of at least one aziridine compound comprising at least two aziridine groups or at least one aziridine group and at least one alkoxy silane group. The coating can be utilized as a primer for bonding a non-fluorinated substrate to a fluoropolymer film and/or the coating can be used as an (e.g. outer exposed) surface layer. In some embodiments, the article may be the (e.g. backside) film of a photovoltaic module.