Abstract:
A vehicle shock absorbing member, which has a tubular shape having a plurality of flat plate-shaped sidewalls and having a closed section, in which, of the plurality of sidewalls, each of a pair of sidewalls located on right and left sides and separated from each other in a lateral direction of a vehicle has a groove portion formed extending in an axial direction of the tubular shape so as to be recessed inward, which is disposed between a vehicle body-side member and a bumper member in such an attitude that the axial direction corresponds to a longitudinal direction of the vehicle, and which, when subjected to a compressive load, is crushed like an a bellows in the axial direction to absorb impact energy, a pair of flat plate-shaped partition walls being formed in the tubular shape integrally with the tubular shape so as to be separated from each other in a vertical direction and so as to couple the pair of sidewalls, and the upper partition wall being tilted downward and the lower partition wall being tilted upward such that an interval between the pair of partition walls decreases closer to an inner side of the vehicle in the lateral direction of the vehicle.
Abstract:
In one embodiment, a memory system for writing redundant data output by an encoding processing circuit, comprises a memory, a encoding processing circuit, and a decoding circuit. The memory is electrically rewritable by using memory cells. The memory cells are capable of having two different resistance values corresponding to logical values of 1 or 0 respectively. The redundant data is read from and a predetermined logical value is written to the memory by flowing current in a same direction. The encoding processing circuit performs redundant encoding processing on target data and outputs redundant data. A number of bits having the predetermined logical value exceeds a number of bits having the logical value other than the predetermined logical value, for writing the redundant data to the memory. A decoding circuit reads data from the memory, and performs a decoding process on the data.
Abstract:
According to one embodiment, a memory device comprises a writing device that writes data bits, check bits for error corrections, and overhead bit(s) into a memory, each bit of the overhead bit(s) corresponding to each group of bit group(s) including at least one bit of the data bits and/or the check bits, each bit of the overhead bit(s) indicating whether the corresponding bit group has been inverted, a reading unit that reads the data bits, the check bits, and the overhead bit(s) from the memory, a correcting unit that corrects an error in the data bits and overhead bit(s) read from the memory, based on the check bits, and an inverting unit that inverts the data bits contained in the bit group corresponding to the overhead bit and outputs the inverted data bits as data read from the memory when the error-corrected overhead bit indicates that inversion has been performed.
Abstract:
An active-energy-ray-curable inkjet recording ink composition is provided, in which a polymerizable compound having an active-energy-ray-polymerizable group and a polymerizable compound having at least two active-energy-ray-polymerizable groups are used in amounts of 60 to 95 mass % and 5 to 40 mass % relative to the total amount of the active-energy-ray-polymerizable compound, respectively; the polymerizable compound having an active-energy-ray-polymerizable group includes N-vinyl-2-caprolactam and isobornyl acrylate in amounts of 1 to 15 mass % and 1 to 25 mass % relative to the total amount of the active-energy-ray-polymerizable compound, respectively; and the polymerizable compound having at least two active-energy-ray-polymerizable groups includes a polymerizable compound having a vinyl ether group. Furthermore, a method for forming an image is provided.
Abstract:
An electric power tool includes a cylindrical reducer case accommodating the speed reduction mechanism. The speed reduction mechanism includes a planetary gear train and a movable member which is axially slidable to be engaged with or disengaged from the planetary gear train. The electric power tool includes the reducer case including a slide hole formed through a sidewall of the reducer case and axially extended and a rotary plate which is rotatable around a periphery of the reducer case about the axis, the rotary plate including an operation slot formed axially obliquely and overlapped with the slide hole; a supporting member radially outwardly protruded from the movable member and extended through the slide hole and the operation slot; and a biasing unit for applying a pressing force to the supporting member in a moving direction of the supporting member when the rotary plate is rotated to a position.
Abstract:
A method for sorting and acquiring a semiconductor element, including: disposing a plurality of semiconductor elements in an effective section in a semiconductor substrate; disposing a standard semiconductor element outside of the effective section in the semiconductor substrate; forming a bump in each of the plurality of the semiconductor elements and in the standard semiconductor element; performing a test on the plurality of the semiconductor elements in the effective section; forming a location map using the standard semiconductor element as a base point; and picking up the semiconductor elements determined as non-defective in the test from the plurality of the semiconductor elements based on the location map.
Abstract:
A cache memory has a data holding unit having multiple cache lines each of which includes an address area, a data area and a dirty bit, and a controller which is given read data and a correction execution signal indicating whether or not error correction has been performed for the read data, the read data has been read from a memory storing error-correction-coded data, which also stores address information corresponding to the read data into the address area of any one of the multiple cache lines, stores the read data into the data area, and sets a predetermine value as the dirty bit on the basis of the correction execution signal.
Abstract:
A method of peeling an electronic component. The method includes a step of, when the electronic component is adhered onto a first main surface of a tape member, bringing a bellowphragm into contact with a second main surface, which is the other main surface of the tape member; and a step of, after the bellowphragm is brought into contact with the second main face, deforming the bellowphragm and the tape member by supplying a fluid to the bellowphragm to thereby peel the electronic component from the tape member.
Abstract:
A field-effect transistor or a single electron transistor is used as sensors for detecting a detection target such as a biological compound. A substrate has a first side and a second side, the second side being opposed to the first side. A source electrode is disposed on the first side of the substrate and a drain electrode disposed on the first side of the substrate, and a channel forms a current path between the source electrode and the drain electrode. An interaction-sensing gate is disposed on the second side of the substrate, the interaction-sensing gate having a specific substance that is capable of selectively interacting with the detection target. A gate for applying a gate voltage adjusts a characteristic of the transistor as the detection target changes the characteristic of the transistor when interacting with the specific substance.
Abstract:
A flat panel display apparatus includes a plasma display panel, a power supply substrate, a signal processing substrate, a Y sustaining substrate, and an X sustaining substrate. The power supply substrate, the signal processing substrate, the Y sustaining substrate and the X sustaining substrate are arranged at a back of the plasma display panel. When viewing the plasma display panel from the back, the power supply substrate is arranged at a center portion of the plasma display panel, the Y sustaining substrate is arranged at one of a left and right side of the plasma display panel, the X sustaining substrate is arranged at the other of the left and right side, and the signal processing substrate is arranged under the X sustaining substrate. A circuit substrate other than the power supply substrate, the Y sustaining substrate, and the X sustaining substrate is arranged under the power supply substrate.