Abstract:
A flat panel display apparatus includes a plasma display panel, a power supply substrate, a signal processing substrate, a Y sustaining substrate, and an X sustaining substrate. The power supply substrate, the signal processing substrate, the Y sustaining substrate and the X sustaining substrate are arranged at a back of the plasma display panel. When viewing the plasma display panel from the back, the power supply substrate is arranged at a center portion of the plasma display panel, the Y sustaining substrate is arranged at one of a left and right side of the plasma display panel, the X sustaining substrate is arranged at the other of the left and right side, and the signal processing substrate is arranged under the X sustaining substrate. A circuit substrate other than the power supply substrate, the Y sustaining substrate, and the X sustaining substrate is arranged under the power supply substrate.
Abstract:
Space is decreased in the direction of thickness on a side of a substrates mounted on a back of a flat panel display to adapt requirement for increasing and thinning its size, and most flat panel displays forcibly radiate heat with a fan provided thereon. The present invention provides a flat panel display having fewer heat radiating fans to secure a channel for causing a heat radiating air to flow. Portions where electronic circuit device on a back of a display panel are mounted are divided into three: left; center; and right portions; with a main frame as a border, the electronic circuit device are constructed of four module substrates, the substrate which is the greatest in heating value in the four module substrates (hereinafter referred to as a substrate) is arranged in the center portion and the substrates which are the smallest and the second smallest in heating value therein are arranged in the same portion.
Abstract:
To provide a reliable high brightness and definition image display by inhibiting a possible increase in fan noise and promoting cooling of an upper, hot portion of a display panel module, various boards, and image processing electronic components, an image display includes a flat display panel module, a display surface side cover on a display surface side of the display panel module, a non display surface side cover on a non display surface side of the display panel module, a display driving board, a power supply board, and a cooling fan, wherein a case of the cooling fan is larger than a distance between the display panel module and the non display surface side cover in an area where the cooling fan is installed, and a first end of the case of the cooling fan closer to the non display surface-side cover is positioned above a second end of the case closer to the display panel module.
Abstract:
For improving a cooling efficiency of a display panel in a flat-type image display, various substrates and an image display element are disposed within a thin-sized housing thereof, including: a display panel; a chassis supporting the display panel from a rear surface side thereof; a front surface-side cover on a front side of the display panel; a rear surface-side cover on a rear side of the display panel; an image display element connected to the display panel; a display driver substrate connected to the display panel, and on a surface thereof opposite to the chassis are provided circuit parts; a power source substrate, supplying driving power to the display driver substrate and the image display element, and on a surface thereof opposite to the chassis are provided circuit parts thereof; and a first insulator board opposite to the display driver substrates and the power source substrate of the chassis.
Abstract:
A large-screen image display apparatus includes a stand for supporting the display module, which has a leg portion. The leg portion of the stand is inserted into the main frame. The leg portion and the main frame are fastened together at a first screw hole formed through the leg portion. In addition, the leg portion and a fixing part of the outer frame are fastened together at a second screw hole formed through the leg portion. The first screw hole and the second screw hole are formed on different faces of the leg portion and at different heights. This can provide a large-screen image display apparatus with a less-wobble, high-safety, high-reliability, and low-cost stand-attaching structure.
Abstract:
A flat-type image display, such as, a plasma display, a LCD display, an OLED display, etc., in particular, for improving a cooling efficiency of a display panel, various kinds of substrates and an image display element, within the thin-sized housing thereof, comprises: a display panel; a chassis, which supports the display panel from a rear surface side thereof; a front surface-side cover, which is provided on a front side of the display panel; a rear surface-side cover, which is provided on a rear side of the display panel; an image display element connected with the display panel; a display driver substrate, which is connected with the display panel, and on a surface of which opposite to the chassis are provided circuit parts thereof; a power source substrate, which supplies driving power to the display driver substrate and the image display element, and on a surface of which opposite to the chassis are provided circuit parts thereof; and a first insulator board, which is provided at a position opposite to the display driver substrates and the power source substrate of the chassis.
Abstract:
To provide a reliable high brightness and definition image display by inhibiting a possible increase in fan noise and promoting cooling of an upper, hot portion of a display panel module, various boards, and image processing electronic components, an image display includes a flat display panel module, a display surface side cover on a display surface side of the display panel module, a non display surface side cover on a non display surface side of the display panel module, a display driving board, a power supply board, and a cooling fan, wherein a case of the cooling fan is larger than a distance between the display panel module and the non display surface side cover in an area where the cooling fan is installed, and a first end of the case of the cooling fan closer to the non display surface-side cover is positioned above a second end of the case closer to the display panel module.
Abstract:
A flat panel display apparatus includes a plasma display panel, a power supply substrate, a signal processing substrate, a Y sustaining substrate, and an X sustaining substrate. The power supply substrate, the signal processing substrate, the Y sustaining substrate and the X sustaining substrate are arranged at a back of the plasma display panel. When viewing the plasma display panel from the back, the power supply substrate is arranged at a center portion of the plasma display panel, the Y sustaining substrate is arranged at one of a left and right side of the plasma display panel, the X sustaining substrate is arranged at the other of the left and right side, and the signal processing substrate is arranged under the X sustaining substrate. A circuit substrate other than the power supply substrate, the Y sustaining substrate, and the X sustaining substrate is arranged under the power supply substrate.
Abstract:
Space is decreased in the direction of thickness on a side of a substrates mounted on a back of a flat panel display to adapt requirement for increasing and thinning its size, and most flat panel displays forcibly radiate heat with a fan provided thereon. The present invention provides a flat panel display having fewer heat radiating fans to secure a channel for causing a heat radiating air to flow. Portions where electronic circuit device on a back of a display panel are mounted are divided into three: left; center; and right portions; with a main frame as a border, the electronic circuit device are constructed of four module substrates, the substrate which is the greatest in heating value in the four module substrates (hereinafter referred to as a substrate) is arranged in the center portion and the substrates which are the smallest and the second smallest in heating value therein are arranged in the same portion.
Abstract:
A video processing apparatus includes: a video processor configured to generate a video signal; an automatic image quality adjustment unit configured to determine a first image quality adjustment set value based on the video signal; a user image quality adjustment unit configured to determine a second image quality adjustment set value based on a user's operation; an image quality processor configured to perform an image quality adjustment on the video signal based on the first and second image quality adjustment set values; and a controller configured to: control the image quality processor to perform the image quality adjustment based on the first and the second image quality adjustment set values.