Abstract:
Provided is a nitride semiconductor device including: a nitride semiconductor layer over a substrate wherein the nitride semiconductor has a two-dimensional electron gas (2DEG) channel inside; a drain electrode in ohmic contact with the nitride semiconductor layer; a source electrode in Schottky contact with the nitride semiconductor layer wherein the source electrode is spaced apart from the drain electrode; a dielectric layer formed on the nitride semiconductor layer between the drain electrode and the source electrode and on at least a portion of the source electrode; and a gate electrode disposed on the dielectric layer to be spaced apart from the drain electrode, wherein a portion of the gate electrode is formed over a drain-side edge portion of the source electrode with the dielectric layer interposed therebetween, and a manufacturing method thereof.
Abstract:
Disclosed herein is a nitride based semiconductor device, including: a substrate; a nitride based semiconductor layer having a lower nitride based semiconductor layer and an upper nitride based semiconductor layer on the substrate; an isolation area including an interface between the lower nitride based semiconductor layer and the upper nitride based semiconductor layer; and drain electrodes, source electrode, and gate electrodes formed on the upper nitride based semiconductor layer. According to preferred embodiments of the present invention, in the nitride based semiconductor device, by using the isolation area including the interface between the lower nitride based semiconductor layer and the upper nitride based semiconductor layer, problems of parasitic capacitance and leakage current are solved, and as a result, a switching speed can be improved through a gate pad.
Abstract:
The present invention relates to a nitride semiconductor device One aspect of the present invention provides a nitride semiconductor device including: a nitride semiconductor layer having a 2DEG channel; a source electrode in ohmic contact with the nitride semiconductor layer; a drain electrode in ohmic contact with the nitride semiconductor layer; a p-type nitride layer formed on the nitride semiconductor layer between the source and drain electrodes; an n-type nitride layer formed on the p-type nitride layer; and a gate electrode formed between the source and drain electrodes to be close to the source electrode and in contact with the n-type nitride layer so that a source-side sidewall thereof is aligned with source-side sidewalls of the p-type and n-type nitride layers.
Abstract:
There is provided a semiconductor device having a High Electron Mobility Transistor (HEMT) structure allowing for enhanced performance and a method of manufacturing the same. The semiconductor device includes a base substrate; a semiconductor layer provided on the base substrate; a source electrode, a gate electrode and a drain electrode provided on the semiconductor layer to be spaced apart from one another; and an ohmic-contact layer partially provided at an interface between the drain electrode and the semiconductor layer.
Abstract:
A three-dimensional porous scaffold and a preparation method thereof. The three-dimensional porous scaffold comprises a biodegradable multifilament draw-textured yarn on the inside of a tubular knitted fabric made of a biodegradable polymer. The three-dimensional porous scaffold has a porosity formed by the network mesh structure of the tubular knitted fabric and the 10-150 μm pores formed in the biodegradable multifilament draw-textured yarn, while it has a bulkiness of 150-1000% due to the biodegradable multifilament drawn textured yarn inserted in the tubular knitted fabric. Thus, the scaffold has a high degree of interconnection between pores, so that cell culture, cell delivery or drug delivery on the stable three-dimensional scaffold structure is performed in an optimized manner.
Abstract:
A drum type washing machine is provided, in which vibration is efficiently attenuated, by a maximum capacity within a size-fixed cabinet is provided, and by which a user does not bend over or sit down to load laundry into the washing machine. The drum type washing machine includes a cabinet forming an exterior of the drum type washing machine, a tub fixed within the cabinet, the tub having a laundry loading entrance at an outer circumference of the tub, a drum rotatably provided within the tub, the drum having an opening on a lateral side of the drum to communicate with the laundry loading entrance of the tub, a motor assembly provided next to one side of the drum to rotate the drum, and a suspension assembly provided to support a weight of the drum and attenuate vibration of the drum.
Abstract:
Disclosed herein is a monolithic semiconductor device including: a substrate; a high electron mobility transistor (HEMT) structure that is a first device structure formed on the substrate; and a laterally diffused metal oxide field effect transistor (LDMOSFET) structure that is a second device structure formed to be connected with the HEMT structure on the substrate.The monolithic semiconductor device according to preferred embodiments of the present invention is a device having characteristics of a normally-off device while maintaining high current characteristics in a normally-on state, thereby improving high current and high voltage operation characteristics.
Abstract:
Provided is a nitride semiconductor device including: a nitride semiconductor layer over a substrate wherein the nitride semiconductor has a two-dimensional electron gas (2DEG) channel inside; a drain electrode in ohmic contact with the nitride semiconductor layer; a source electrode spaced apart from the drain electrode, in Schottky contact with the nitride semiconductor layer, and having an ohmic pattern in ohmic contact with the nitride semiconductor layer inside; a dielectric layer formed on the nitride semiconductor layer between the drain electrode and the source electrode and on at least a portion of the source electrode; and a gate electrode disposed on the dielectric layer to be spaced apart from the drain electrode, wherein a portion of the gate electrode is formed over a drain-side edge portion of the source electrode with the dielectric layer interposed therebetween, and a manufacturing method thereof.
Abstract:
There is provided an apparatus for tracking and condensing sunlight of a sliding type which tracks a direction of sunlight according to variations of an altitude or orbit of the sun pivots a solar module plate to maximize condensing efficiency, and strengthens a fixing structure on an inclined ground or inclined building surface by suing a frame structure on the bottom without using a concrete base harmful to natural environment.
Abstract:
The present invention provides a semiconductor device including: a base substrate; a semiconductor layer which is disposed on the base substrate and has a 2-Dimensional Electron Gas (2DEG) formed therewithin; a first ohmic electrode disposed on a central region of the semiconductor layer; a second ohmic electrode which is formed on the edge regions of the semiconductor layer in such a manner to be disposed to be spaced apart from the first ohmic electrodes, and have a ring shape surrounding the first ohmic electrode; and a Schottky electrode part which is formed on the central region to cover the first ohmic electrode and is formed to be spaced apart from the second ohmic electrode.