Abstract:
An apparatus for storing data records associated with a medical monitoring event in a data structure. An implanted device obtains data and stores the data in the data record in a first data structure that is age-based. Before an oldest data record is lost, the oldest data record may be stored in a second data structure that is priority index-based. The priority index may be determined by a severity level and may be further determined by associated factors. The implanted device may organize, off-load, report, and/or display a plurality of data records based on an associated priority index. Additionally, the implanted device may select a subset or composite of physiologic channels from the available physiologic channels based on a selection criterion.
Abstract:
A medical device senses electrical activity within a patient and, in some embodiments, delivers stimulation to the patient via a plurality electrical paths, which include electrodes and associated conductors of one or more leads. The medical device determines whether a symptomatic event, such as a seizure, is detected based on the sensed electrical activity, and measures the impedance of one or more of the paths in response to the determination. If the medical device identifies a dysfunctional electrical path based on the measured impedance, the device may, as examples, disable the dysfunctional electrical path, or modify a stimulation or sensing program to not use the dysfunctional electrical path. In this manner, the medical device may identify inaccurate symptomatic event detection and, where the device delivers a therapy in response to such detection, such as stimulation via the electrical paths, avoid inappropriate therapy delivery.
Abstract:
Systems and methods for detecting and/or treating nervous system disorders, such as seizures. Certain embodiments of the invention relate generally to implantable medical devices (IMDs) adapted to detect and treat nervous system disorders in patients with an IMD. Certain embodiments of the invention include detection of seizures based upon comparisons of long-term and short-term representations of physiological signals. Further embodiments of the invention include preparing for the delivery of therapy by warming up therapy delivery components prior to the expected delivery of therapy.
Abstract:
Techniques for increasing the safety of medical device programming using general purpose hardware, such as a general purpose personal computer, are described. In some embodiments, a system includes an intermediate computing device comprising an applications module. Information from the applications module, such as instructions for an implantable medical device (IMD), may be presented to a user via a user input terminal that is separate from the intermediate computing device. A user may interact with the user input terminal to select an instruction from the applications module, and the intermediate computing device may transmit the selected instruction to the IMD. In some embodiments, the intermediate computing device comprises a web server and the user input terminal comprises a web browser configured to access the web server. In other embodiments, the intermediate computing device comprises a client server and the user input terminal comprises a client.
Abstract:
Communication sessions between external devices and implantable medical devices are tracked using a session value that is incremented for each new session and that is stored within the implantable medical device. Session logs that are created for each session may include the session value that is obtained for that session. The session value allows available session logs to be considered in the proper sequence and allows for an awareness of missing session logs. The incrementing of the session value may occur at the external device according to one convention, or at the implantable medical device according to another. The session value to be used for a given session may be the value accessed from the implantable medical device according to one convention or may be the session value that results from incrementing the session value that is accessed from the implantable medical device according to another.
Abstract:
Methods and apparatus for storing data records associated with an extreme value are disclosed. Signal data is stored in a first buffer of a set of buffers. If a local extreme value for the first buffer exceeds a global extreme value, signal data is stored in a second buffer of the set of buffers. This process is repeated, wrapping around and overwriting buffers until the signal data in a current buffer does not have a local extreme value that exceeds the global extreme value. When this happens, signal data may be stored in a subsequent buffer and if a local extreme value of the subsequent buffer does not exceed the global extreme value, further signal data may be stored in the subsequent buffer in a circular manner until either an instantaneous extreme value exceeds the global extreme value or the recording period ends. In an embodiment, the extreme value may be a peak value.
Abstract:
Techniques for increasing the safety of medical device programming using general purpose hardware, such as a general purpose personal computer, are described. Some embodiments include a watchdog module that is serviced by the general purpose hardware, a mediator module that monitors programming instructions from the general purpose hardware, and/or a safe mode input that may be activated by a user. In some embodiments, a system comprises an implantable medical device, an intermediate device, a computing device that communicates with the implantable medical device via the intermediate device. The intermediate device may provide any one or more of the safety measures described above. In some embodiments, the intermediate device is dedicated hardware, and critical programming functions are provided by the intermediate device, rather than the general purpose hardware. In some embodiments, an implantable medical device provides one or more of the above-discussed safety features, rather than a separate intermediate device.
Abstract:
A programming system for an electronic medical device (EMD) is described. The programming system, as described in this disclosure, comprises a host computer, such as a general purpose computer in an in-clinic computer network, executing a software platform that provides an operating environment with which a user can interact to program an EMD. The software platform invokes monitoring software that ensures that the host computer satisfies criteria for safe operation of the operating environment, e.g., ensures that the host computer meets the minimum operating conditions required for reliable operation of the operating environment. In particular, the monitoring software may monitor system faults that occur during operation, as well as ensure that criteria for safe operation are satisfied prior to initiating the operating environment.
Abstract:
An expiration time of a therapeutic fluid delivered by an implantable fluid delivery device is employed to calculate a fill volume and determine a refill interval for the fluid. The expiration time of the therapeutic fluid may be based on or dictated by a stability time set by the manufacturer of the therapeutic fluid, a clinician treating a patient to whom the fluid is to be delivered, the manufacturer of the device delivering the fluid, or combinations thereof.
Abstract:
Methods and apparatus for storing data records associated with a medical monitoring event in a data structure. An implanted device obtains data and stores the data in the data record in a first data structure that is age-based. Before an oldest data record is lost, the oldest data record may be stored in a second data structure that is priority index-based. The priority index may be determined by a severity level and may be further determined by associated factors. The implanted device may organize, off-load, report, and/or display a plurality of data records based on an associated priority index. Additionally, the implanted device may select a subset or composite of physiologic channels from the available physiologic channels based on a selection criterion.