摘要:
A mold making system for surface patterning of a roller mold is provided. The roller mold includes a transparent hollow roller and a polymer layer disposed at an outer surface of the transparent hollow roller. The mold making system includes a laser generation device, an optical path changing device, and a control device connected to the optical path changing device. The laser generation device is used for generating an ultrafast laser. The optical path changing device is disposed at an inner space of the transparent hollow roller to receive the ultrafast laser. The control device controls the optical path changing device to guide the ultrafast laser to pass through the transparent hollow roller and to be focused at a focus position in the polymer layer.
摘要:
A mold making system for surface patterning of a roller mold is provided. The roller mold includes a transparent hollow roller and a polymer layer disposed at an outer surface of the transparent hollow roller. The mold making system includes a laser generation device, an optical path changing device, and a control device connected to the optical path changing device. The laser generation device is used for generating an ultrafast laser. The optical path changing device is disposed at an inner space of the transparent hollow roller to receive the ultrafast laser. The control device controls the optical path changing device to guide the ultrafast laser to pass through the transparent hollow roller and to be focused at a focus position in the polymer layer.
摘要:
A method applying a circular photonic crystal structure to improve optical properties of a photoelectric conversion device such as a light emitting diode device, an organic light emitting diode device or a solar cell is provided, wherein the circular photonic crystal structure is configured on a junction surface between two different mediums where passes a light emitted or received by the photoelectric conversion device. The circular photonic crystal structure provides isotropic photonic band gap which conduces high light extraction efficiency.
摘要:
Disclosed is a trace detection device of a biological and chemical analyte, including a metal substrate, a periodic metal nanostructure on the metallic substrate, a dielectric layer on the periodic metal nanostructure, and a continuous metal film on the dielectric layer. Tuning the thickness of the dielectric layer and/or the continuous metal film to meet the laser wavelength can shift the absorption peak wavelength of the sensor, thereby further enhancing the Raman signals of the analyte molecules.
摘要:
A method applying a circular photonic crystal structure to improve optical properties of a photoelectric conversion device such as a light emitting diode device, an organic light emitting diode device or a solar cell is provided, wherein the circular photonic crystal structure is configured on a junction surface between two different mediums where passes a light emitted or received by the photoelectric conversion device. The circular photonic crystal structure provides isotropic photonic band gap which conduces high light extraction efficiency.
摘要:
Disclosed is a trace detection device of a biological and chemical analyte, including a metal substrate, a periodic metal nanostructure on the metallic substrate, a dielectric layer on the periodic metal nanostructure, and a continuous metal film on the dielectric layer. Tuning the thickness of the dielectric layer and/or the continuous metal film to meet the laser wavelength can shift the absorption peak wavelength of the sensor, thereby further enhancing the Raman signals of the analyte molecules.
摘要:
The present invention relates to a beam modulating apparatus for mold fabrication by ultra-fast laser technique. More particularly, the present invention discloses a beam modulating apparatus for fabricating micro-/nano-scaled structures, which adopts an energy shaping scheme for beam shape modulation while using the modulated beam for mold fabrication. Following the development of flexible electronic devices, such as flexible displays, all kinds of roller molds formed with micro-/nano-scaled structures are becoming the key issue for commercialization and mass production which require a breakthrough in ultra-precision machining and photo-lithography that overcomes the bottlenecks related to shape, size, thermal effect and precision for fabricating sub-micron sized structures and thus greatly enhancing product design capability and functionality. The present invention is capable of modulating pulse shape of an ultra-fast laser beam for making the energy distribution uniform on a mold, that it can be used directly on a curved surface of a metal cylinder since as a cold machining process which utilizes ultra-fast pulsed laser. Moreover, it can be used for forming micro-/nano-scaled structures of any complicated three-dimensional shapes on a mold with line width that is smaller than 10 μm while enabling the mold to be suitable for a roll-to-roll process so as to meet the requirement of cost reduction and value addition.