Abstract:
A cooling apparatus, system and like method for an electronic device includes a plurality of heat producing electronic devices affixed to a wiring substrate. A plurality of heat transfer assemblies each include heat spreaders and thermally communicate with the heat producing electronic devices for transferring heat from the heat producing electronic devices to the heat transfer assemblies. The plurality of heat producing electronic devices and respective heat transfer assemblies are positioned on the wiring substrate having the regions overlapping. A heat conduit thermally communicates with the heat transfer assemblies. The heat conduit circulates thermally conductive fluid therethrough in a closed loop for transferring heat to the fluid from the heat transfer assemblies via the heat spreader. A thermally conductive support structure supports the heat conduit and thermally communicates with the heat transfer assemblies via the heat spreader transferring heat to the fluid of the heat conduit from the support structure.
Abstract:
A system, method and computer program product for supporting system initiated checkpoints in high performance parallel computing systems and storing of checkpoint data to a non-volatile memory storage device. The system and method generates selective control signals to perform checkpointing of system related data in presence of messaging activity associated with a user application running at the node. The checkpointing is initiated by the system such that checkpoint data of a plurality of network nodes may be obtained even in the presence of user applications running on highly parallel computers that include ongoing user messaging activity. In one embodiment, the non-volatile memory is a pluggable flash memory card.
Abstract:
A cooling apparatus, system and like method for an electronic device includes a plurality of heat producing electronic devices affixed to a wiring substrate. A plurality of heat transfer assemblies each include heat spreaders and thermally communicate with the heat producing electronic devices for transferring heat from the heat producing electronic devices to the heat transfer assemblies The plurality of heat producing electronic devices and respective heat transfer assemblies are positioned on the wiring substrate having the regions overlapping. A heat conduit thermally communicates with the heat transfer assemblies. The heat conduit circulates thermally conductive fluid therethrough in a closed loop for transferring heat to the fluid from the heat transfer assemblies via the heat spreader. A thermally conductive support structure supports the heat conduit and thermally communicates with the heat transfer assemblies via the heat spreader transferring heat to the fluid of the heat conduit from the support structure.
Abstract:
A heatsink structure and method for the cooling of closely spaced packaged heat-producing devices, such as dual-in-line memory modules (DIMMs). A folded sheet metal heatsink structure is provided which is constituted of a coined metallic material and which has a large plurality of waffle-shaped ridges extending therefrom constituting additional surface areas which are adapted to enable heat generated by hub chips to pass upwardly and then outwardly through waffle-like ridges and, thus, dissipated to the exterior, thereby imparting an improved degree of cooling to heat-producing components or devices.
Abstract:
A fansink arrangement for a laptop computer wherein two distinct patterns of air intake can be employed. Particularly, dual air intakes of the laptop can be managed and controlled depending upon an operating mode of the computer. Thus, when the computer is in a “stand alone” mode, only one air intake is employed while in a “docking” mode of the computer two air intakes are employed.
Abstract:
A PGA socket including a plurality of sub-socket components, which when used in combination forms a larger effective socket, includes multiple apertures configured to receive corresponding pins of an IC. The PGA socket further includes multiple contact members, each of the contact members corresponding to a respective one of the apertures. The contact members are configured to movably engage corresponding pins of the IC upon respective movement of the apertures so as to provide electrical and mechanical contact thereto. Each of the sub-socket components is configured to mechanically engage at least one of the other sub-socket components such that the contact members in each of the sub-socket components are capable of electrically connecting to corresponding pins of the IC substantially simultaneously.
Abstract:
A high density circuit package includes a pair of planar packages, the planar packages exhibiting front and back surfaces and positioned back-to-back in the high density circuit package. Each planar package includes a flexible circuit carrier having a plurality of circuit chips mounted thereon. Front and back planar metallic heat sinks sandwich the circuit carriers, at least one of the heat sinks contacting a surface of the chips mounted on the sandwiched circuit carriers. Each heat sink is provided with air flow apertures formed in its planar surface and adjacent to each circuit chip. A circuit card interconnects with the circuit carriers in an interconnection region and is pluggable into a female connector. The planar metallic heat sinks and circuit carriers are mechanically packaged so as to provide a planar arrangement which aligns the apertures in both the front and rear heat sinks. A pair of planar packages are mechanically connected in a back-to-back arrangement so that the apertures therebetween are aligned. The associated circuit cards are also back-to-back oriented so as to enable their joint interconnection into the female connector.
Abstract:
A high density package for a plurality of integrated circuit chips is described, the package including a number of planar subunits. A subunit includes first and second planar metal plates and a spacer metal plate sandwiched therebetween. Each spacer metal plate is provided with a plurality of circuit-receiving apertures. A planar circuit carrier is provided for each aperture in the spacer metal plate. One face of each circuit carrier includes a plurality of bonded chips. Each circuit carrier is positioned in a circuit-receiving aperture so that rear aspects of the bonded chips bear upon the second planar metal plate. Each circuit carrier has a connector region which extends out from between the first planar metal plate and the metal spacer plate at one extremity of each circuit-receiving aperture. A circuit card is positioned at that extremity and has a plurality of interconnection areas, one for each extended connector region. The circuit card has its major surface oriented parallel to the metal plates so that the entire package presents an overall planar configuration.
Abstract:
A versatile robotic gripper is easily and quickly adjusted to grip objects of different geometrical shapes without changing parts and under complete machine control. Opposing jaws have a matrix of axially movable pins each of which is mechanically locked in any axial position. Actuation of an operating mechanism to move the jaws together to grasp an object depresses the pins and they collectively conform to the shape of the object; the jaws retain this shape upon release of the object. A plate is raised to unlock the pins which are returned by springs to a fixed coplanar position.
Abstract:
A parts feeder is disclosed in which randomly grouped parts are stored, oriented and discharged at a uniform rate from a rotating or indexing spacer wheel fed by stepwise movable supply apparatus having the rotating spacer wheel as its frame of reference.