Abstract:
The present invention describes methods and processes for the production of proteins, particularly glycoproteins, by animal cell or mammalian cell culture, preferably, but not limited to, fed-batch cell cultures. In one aspect, the methods comprise at least two temperature shifts performed during the culturing period, in which the temperature is lower at the end of the culturing period than at the time of initial cell culture. Throughout their duration, the culturing processes of the invention involving two or more downward shifts in temperature sustain a high viability of the cultured cells, and can yield an increased end titer of protein product, and a high quality of protein product, as determined, e.g., by sialic acid content of the produced protein. In another aspect, the methods comprise the delayed addition of polyanionic compound during the culturing period. The delayed addition of polyanionic compound sustains a high viability of the cultured cells, and can extend the growth phase, delay the onset of the death phase, and arrest the death phase.
Abstract:
The present invention describes methods and processes for the production of proteins, particularly glycoproteins, by animal cell or mammalian cell culture, illustratively, but not limited to, fed-batch cell cultures. The methods comprise feeding the cells with D-galactose, preferably with feed medium containing D-galactose, preferably daily, to sustain a sialylation effective level of D-galactose in the culture for its duration, thus increasing sialylation of the produced proteins. The methods can also comprise at least two temperature shifts performed during the culturing period, in which the temperature is lower at the end of the culturing period than at the time of initial cell culture. The cell culture processes of the invention involving two or more temperature shifts sustain a high cell viability, and can allow for an extended protein production phase. The methods can also comprise the delayed addition of polyanionic compound at a time after innoculation. Supplementation of the cultures with D-galactose, preferably in a feed medium, to sustain galactose at sialylation effective levels in the cultures until the end of a culture run reverses a decline in sialylation that accompanies culture scale up, and is advantageous for large scale culturing processes.
Abstract:
The present invention describes methods and processes for the production of proteins, particularly glycoproteins, by animal cell or mammalian cell culture, illustratively, but not limited to, fed-batch cell cultures. The methods comprise feeding the cells with D-galactose, preferably with feed medium containing D-galactose, preferably daily, to sustain a sialylation effective level of D-galactose in the culture for its duration, thus increasing sialylation of the produced proteins. The methods can also comprise at least two temperature shifts performed during the culturing period, in which the temperature is lower at the end of the culturing period than at the time of initial cell culture. The cell culture processes of the invention involving two or more temperature shifts sustain a high cell viability, and can allow for an extended protein production phase. The methods can also comprise the delayed addition of polyanionic compound at a time after innoculation. Supplementation of the cultures with D-galactose, preferably in a feed medium, to sustain galactose at sialylation effective levels in the cultures until the end of a culture run reverses a decline in sialylation that accompanies culture scale up, and is advantageous for large scale culturing processes.
Abstract:
The invention concerns a BI-CMOS process, in which Field-Effect Transistors (FETs) and Bipolar Junction Transistors (BJTs) are manufactured on a common substrate. In several processing steps, FET structures are formed simultaneously with BJT structures. For example, in one step, polysilicon gate electrodes for the FETs and polysilicon emitters for the BJTs are formed simultaneously. In another aspect of the invention, a polysilicon layer is used to reduce channeling which would otherwise occur during an implant step.
Abstract:
An Internet high fidelity audio transmission and compression protocol including a system for representing synthesized music in a relatively small file as compared to digital recording. The protocol includes a method for streaming the transmission of a music data file from a Server-Composer computer such that the music can begin being played back as soon as the file begins to arrive at a Client-Player computer. The system includes a graduated resolution improvement feature which allows the music to be recreated exactly as originally composed as the necessary wavetable data is downloading in the background and the music continues to play in the foreground.
Abstract:
A process for forming a titanium silicide local interconnect between electrodes separated by a dielectric insulator on an integrated circuit. A first layer of titanium is formed on the insulator, and a layer of silicon is formed on the titanium. The silicon layer is masked and etched to form a silicon strip connecting the electrodes, and an overlying second layer of titanium is formed over the silicon strip. The titanium and silicon are heated to form nonsilicidized titanium over a strip of titanium silicide, and the nonsilicidized titanium is removed.
Abstract:
The invention concerns a BI-CMOS process, in which Field-Effect Transistors (FETs) and Bipolar Junction Transistors (BJTs) are manufactured on a common substrate. In several processing steps, FET structures are formed simultaneously with BJT structures. For example, in one step, polysilicon gate electrodes for the FETs and polysilicon emitters for the BJTs are formed simultaneously. In another aspect of the invention, a polysilicon layer is used to reduce channeling which would otherwise occur during an implant step.
Abstract:
A process for forming field oxide regions between active regions in a semiconductor substrate. Pad oxide, polysilicon and first silicon nitride layers are successively formed over substrate active regions. The first nitride layer, polysilicon layer, pad oxide layer and a portion of the substrate are then selectively etched to define field oxide regions with substantially vertical sidewalls. A second silicon nitride is provided on the substantially vertical sidewalls, and field oxide is grown in the field oxide regions. The first silicon nitride, polysilicon and pad oxide layers are then removed. The presence of the polysilicon layer prevents the formation of a sharp corner between the field oxide and active regions if an overetch occurs during the removal of the pad oxide layer.
Abstract:
Battery type is determined by measuring effective resistance of a thermistor/resistor network (205, 206, and 207) and one or more of a plurality of current sources (303-305) is enabled to provide the appropriate charging current. Measurement of necessary charging parameters and provision of appropriate charging current are accomplished through an interface to the battery pack undergoing charge that comprises only three connections (313-315).
Abstract:
A process for forming a thin sealing layer of silicon nitride directly upon a silicon substrate to minimize bird's beak encroachment. The process employs in situ fabrication whereby the native oxide is removed from the silicon substrate by etching the hydrogen or hydrogen chloride and followed in direct succession, and in the absence of exposure to an oxidizing environment, with the deposition of a silicon nitride layer by LPCVD. Bird's beak encroachment is incrementally reduced by the absence of the native oxide layer as a path for oxygen species movement during the field oxide growth.