Abstract:
The invention provides an embedded processor architecture comprising a plurality of virtual processing units that each execute processes or threads (collectively, “threads”). One or more execution units, which are shared by the processing units, execute instructions from the threads. An event delivery mechanism delivers events—such as, by way of non-limiting example, hardware interrupts, software-initiated signaling events (“software events”) and memory events—to respective threads without execution of instructions. Each event can, per aspects of the invention, be processed by the respective thread without execution of instructions outside that thread. The threads need not be constrained to execute on the same respective processing units during the lives of those threads—though, in some embodiments, they can be so constrained. The execution units execute instructions from the threads without needing to know what threads those instructions are from.
Abstract:
An object of the present invention is to provide an electronic circuit device capable of reducing the occurrence of electromagnetic waves associated with the propagation of a signal by utilizing light as a signal. The electronic circuit device has a transparent substrate (hereinafter written as a substrate) over which an optical sensor and an optical shutter and an electronic circuit composed of thin film transistors (TFTs) are formed. An optical signal is inputted from an external into the electronic circuit device, the optical signal is directly irradiated on the optical sensor over the substrate, and penetrates through the substrate, and inputted into an optical sensor over another substrate. The optical sensor converts the optical signal into an electronic signal, and the circuit over the substrate operates. A control signal controls the optical shutter, a light is inputted from the external into this optical shutter, and whether it is transmitted or it is interrupted is determined, whereby the signal is taken out.
Abstract:
A pass transistor circuit of the present invention includes a plurality of pass transistor sections having pass transistor logics and has a logic functionality which is based on a pass transistor logic functionality of a plurality of pass transistor sections. One or more of the pass transistor sections is a CMOSFET formed of a p-type MOSFET and an n-type MOSFET. At least one of the p-type MOSFET and the n-type MOSFET of the CMOSFET is a transistor having a TFT structure.
Abstract:
The invention provides, in one aspect, a virtual processor that includes one or more virtual processing units. These virtual processing units execute on one or more processors, and each virtual processing unit executes one or more processes or threads (collectively, “threads”). While the threads may be constrained to executing throughout their respective lifetimes on the same virtual processing units, they need not be. The invention provides, in other aspects, virtual and/or digital data processors with improved dataflow-based synchronization. A process or thread (collectively, again, “thread”) executing within such processor can execute a memory instruction (e.g., and “Empty” or other memory-consumer instruction) that permits the thread to wait on the availability of data generated, e.g., by another thread and to transparently wake up when that other thread makes the data available (e.g., by execution of a “Fill” or other memory-producer instruction).
Abstract:
Disclosed is a display device capable of changing a video image display area of high significance so as to be brighter than a video image display area of low significance, from among a plurality of video images. The display device comprises a liquid crystal display panel (1), a backlight unit (2), and a video image compositing unit (7) that generates composite video image data and backlight data. The backlight data is generated corresponding to the significance of the plurality of video images, and by the brightness of the backlight being adjusted for each display area on the basis of the backlight data, the video image display area of high significance is made brighter than the video image display area of low significance.
Abstract:
The invention provides an embedded processor architecture comprising a plurality of virtual processing units that each execute processes or threads (collectively, “threads”). One or more execution units, which are shared by the processing units, execute instructions from the threads. An event delivery mechanism delivers events—such as, by way of non-limiting example, hardware interrupts, software-initiated signaling events (“software events”) and memory events—to respective threads without execution of instructions. Each event can, per aspects of the invention, be processed by the respective thread without execution of instructions outside that thread. The threads need not be constrained to execute on the same respective processing units during the lives of those threads—though, in some embodiments, they can be so constrained. The execution units execute instructions from the threads without needing to know what threads those instructions are from. A pipeline control unit which launches instructions from plural threads for concurrent execution on plural execution units.
Abstract:
A pn junction type solar cell is formed in a predetermined region on a substrate made of glass. Light emitted from a light emitting unit reaches an n-type semiconductor layer after it passed through substrate. The solar cell generates electromotive force corresponding to a quantity of the emitted light. A control circuit, a mask ROM, a transmitting circuit and an antenna are formed on an upper side of the solar cell. A surface of a semiconductor storage device is entirely covered with an insulating film to block entry of outside air. The insulating film is typically formed of physicochemically stable glass or silicon dioxide.
Abstract:
A transistor model for a simulator simulates a resistance between a source region and a drain region with a model equation which has terms representing resistance values corresponding respectively to areas of mutually different impurity concentrations below a gate section in simulating characteristics of a transistor. At least two of the terms each having a threshold parameter indicating a voltage at which a semiconductor element composed of the associated region and regions adjacent to that region changes from an ON state to an OFF state. The threshold parameters of the terms being specified independently from each other. Thus, the characteristics of a transistor having a set of areas of mutually different impurity concentrations below a gate section, inclusive of subthreshold regions which are difficult to evaluate through actual measurement, can be simulated to high accuracy while preserving a good fit with a capacitance model.
Abstract:
A transistor model for a simulator simulates a resistance between a source region and a drain region with a model equation which has terms representing resistance values corresponding respectively to areas of mutually different impurity concentrations below a gate section in simulating characteristics of a transistor. At least two of the terms each having a threshold parameter indicating a voltage at which a semiconductor element composed of the associated region and regions adjacent to that region changes from an ON state to an OFF state. The threshold parameters of the terms being specified independently from each other. Thus, the characteristics of a transistor having a set of areas of mutually different impurity concentrations below a gate section, inclusive of subthreshold regions which are difficult to evaluate through actual measurement, can be simulated to high accuracy while preserving a good fit with a capacitance model.
Abstract:
A remote control receiving device mounted on an apparatus has a switch circuit and an LED. The switch circuit is connected between a power supplied circuit of the apparatus and a power source. The LED functioning as a light receiving element receives an optical signal from a transmitting device. When the apparatus turns into a standby state based on an optical signal from a transmitting device, the switch circuit is brought into OFF by a microcomputer in the remote control receiving device. This intercept supply of power to the remote control light receiving circuit as well as the apparatus. When the LED receives an optical signal from the transmitting device, the LED outputs a electric control signal under an unbias state to turn on the switch circuit. Thereby, power is supplied to the apparatus.