Abstract:
A system and method for monitoring engine operating data include monitoring various engine operating parameters and periodically storing engine data when corresponding criteria are met. In one embodiment, engine operating parameters may include engine speed, powertrain demand, or a fluid temperature, for example. Engine operating data such as oil pressure, turbo boost pressure, battery voltage, fuel economy, oil temperature, coolant temperature, maximum RPM, maximum vehicle speed, and throttle position sensor voltage, for example may be stored for trending and analysis. In addition, engine components may be monitored to determine service or replacement.
Abstract:
A system and method for monitoring engine operating data include monitoring various engine operating parameters and periodically storing engine data when corresponding criteria are met. In one embodiment, enigne operating parameters may include engine speed, powertrain demand, or a fluid temperature, for example. Engine operating data such as oil pressure, turbo boost pressure, battery voltage, fuel economy, oil temperature, coolant temperature, maximum RPM, maximum vehicle speed, and throttle position sensor voltage, for example may be stored for trending and analysis. In addition, engine components may be monitored to determine service or replacement.
Abstract:
An engine with transport delay represented by a delay period is controlled with a controller in the feed-forward path and a compensator in a negative inner feedback loop around the controller. The controller generates a control signal so as to control the engine as if the engine was without the delay. A compensation signal is generated as the sum of the control signal only over the delay period. The control signal is based on an error signal generated as the difference between a desired input and the sum of a controlled engine output and the compensation signal.
Abstract:
A method for comprehensive integrated control of compression-ignition internal combustion engine, wherein the control strategy integrates various functions of engine control with cooling fan control, and wherein the cooling fan control automatically ramps down cooling speed for multi-speed cooling fans whenever monitored engine conditions effecting cooling fan operation dictate transition of the multi-speed cooling fan from a high speed to an off condition.
Abstract:
A system and method for controlling the fuel pressure in a common rail fuel injection system which electronically controls a variable output high pressure pump based upon engine speed, torque and actual common rail pressure inputs, as well as the present system voltage, thereby providing simple yet stable control of the fuel pressure in the accumulator of the common rail system which is relatively insensitive to supply voltage fluctuations from the power source providing the electrical power to the solenoid-controlled valve which controls the high pressure pump.
Abstract:
A method for comprehensive integrated control of a compression-ignition internal combustion engine having integral fuel pump-injectors utilizing an electronic control unit is disclosed. The control strategy integrates various functions of engine control including fuel delivery, cooling fan control, engine speed governing and overspeed protection, engine braking, torque control, and vehicle speed diagnostics and control. Cooling fan control is integrated with vehicle speed diagnostics and control as well as fuel delivery to provide an integrated cruise control function which incorporates engine braking. The method also includes improved control over the various engine speed governors while improving idle quality by balancing the power delivered by each of the engine cylinders when at idle. The integrated torque control employs functions to reduce NOx emissions and noise utilizing adaptive fuel delivery timing and a split injection strategy.
Abstract:
A method for comprehensive integrated control of a compression-ignition internal combustion engine having integral fuel pump-injectors utilizing an electronic control unit is disclosed. The control strategy integrates various functions of engine control including fuel delivery, cooling fan control, engine speed governing and overspeed protection, engine braking, torque control, and vehicle speed diagnostics and control. Cooling fan control is integrated with vehicle speed diagnostics and control as well as fuel delivery to provide an integrated cruise .control function which incorporates engine braking. The method also includes improved control over the various engine speed governors while improving idle quality by balancing the power delivered by each of the engine cylinders when at idle. The integrated torque control employs functions to reduce NOx emissions and noise utilizing adaptive fuel delivery timing and a split injection strategy.
Abstract:
An efficiency gauge may be used for controlling an automotive vehicle. At least one vehicle parameter is sampled during vehicle operation and at least one measure of driving efficiency is determined from the sampled vehicle parameters. Efficiency measurement may include determining an estimate of kinetic energy lost. One such estimate is the sampled braking velocity cost found based on the difference of the squares of the last two vehicle velocities if the vehicle has decelerated and braking has occurred.
Abstract:
A method for comprehensive integrated control of a compression-ignition internal combustion engine having integral fuel pump-injectors utilizing an electronic control unit is disclosed. The control strategy integrates various functions of engine control including fuel delivery, cooling fan control, engine speed governing and overspeed protection, engine braking, torque control, and vehicle speed diagnostics and control. Cooling fan control is integrated with vehicle speed diagnostics and control as well as fuel delivery to provide an integrated cruise control function which incorporates engine braking. The method also includes improved control over the various engine speed governors while improving idle quality by balancing the power delivered by each of the engine cylinders when at idle. The integrated torque control employs functions to reduce NOx emissions and noise utilizing adaptive fuel delivery timing and a split injection strategy.
Abstract:
A system and method for controlling an engine to limit engine output include determining engine speed, determining vehicle speed, determining a ratio based on the engine speed and the vehicle speed, comparing the ratio to a threshold, and controlling the engine to limit engine output based on the comparison. The ratio used for comparison may be selected from a plurality of ratios based on a current gear ratio which may be an actual or virtual (computed) gear ratio. The threshold may represent a low gear torque limit threshold in one embodiment. A vehicle speed sensor fault may also be considered to determine whether to limit the engine output. In one embodiment, engine output is limited by limiting engine torque.