Abstract:
Electrolyzed water producing method and apparatus are provided which are capable of producing electrolyzed water having a desired property irrespective of the quality of raw water supplied and the like while allowing the size and weight of the apparatus and the cost to be reduced by limiting the capacity of an electrolysis power source. The electrolyzed water producing method includes: circulating an aqueous electrolyte solution to a first electrolytic chamber of a pair of electrolytic chambers opposed to each other across an intervening ion permeable diaphragm while supplying raw water to the second electrolytic chamber; and applying a predetermined voltage to a pair of electrodes disposed in the respective electrolytic chambers with the diaphragm intervening there between, to electrolyze the raw water and the aqueous electrolyte solution, thereby producing electrolyzed water in the second electrolytic chamber.
Abstract:
Operation management apparatus includes a control section for controlling operation of an internal combustion engine, a storage section for storing data of an integrated operating time of the engine monitored by the control section, and a display section capable of displaying not only operating states of the engine but also an integrated operating time of the internal combustion engine. The control section controls the display section to make a blinking display with a predetermined number of blinks, corresponding to the integrated operating time, at predetermined timing.
Abstract:
An operational condition of an outboard motor 1 is detected by an ECU 29, and transmitted via a communication unit 228, from a communication apparatus 283 to a base station 30. Antennas 32 and a cable 33 are arranged along an inner surface of an engine cover 12. The cable 33 is provided with a connector 34 for connecting the antenna 32 to a communication unit 28 and a GPS receiving circuit 31. The communication apparatus and the antennas are held floating in a case 351 which is filled with a gel, and the case 351 is fixed to the engine cover 12. A communication unit 28 is provided inside an engine cover 12. A housing portion 41 for a portable phone PH is provided pivoted about the cover 12 in such a manner that the portable phone is removable from the housing portion 41.
Abstract:
In a start control apparatus for an engine generator having a booster adapted to boost an output of a battery, there is provided an engine starter adapted to supply the boosted battery output to an output winding as a motor current to start the engine, and it is configured to determine whether a position of the piston is before a top dead center (TDC) when the motor current is to be supplied to the winding, and the motor current is increased by an increment when the piston position of the engine is determined to be before the TDC.
Abstract:
An electronic control unit includes a printed wiring board (50), electronic components (51 to 53) mounted on the printed wiring board (50), and a synthetic resin coating (57) formed by injection molding to cover the printed wiring board (50) and the electronic component (51 to 53). The electronic components (51 to 53) are housed in a protective case (75) that can resist pressure and heat during the injection molding of the coating (57). Thus, in the electronic control unit, an electronic component is not damaged by formation of a coating by injection molding so that the electronic control unit can always function normally.
Abstract:
Electrolyzed water producing method and apparatus are provided which are capable of producing electrolyzed water having a desired property irrespective of the quality of raw water supplied and the like while allowing the size and weight of the apparatus and the cost to be reduced by limiting the capacity of an electrolysis power source. The electrolyzed water producing method includes: circulating an aqueous electrolyte solution to a first electrolytic chamber of a pair of electrolytic chambers opposed to each other across an intervening ion permeable diaphragm while supplying raw water to the second electrolytic chamber; and applying a predetermined voltage to a pair of electrodes disposed in the respective electrolytic chambers with the diaphragm intervening there between, to electrolyze the raw water and the aqueous electrolyte solution, thereby producing electrolyzed water in the second electrolytic chamber.
Abstract:
In an ignition coil for an internal combustion engine, the primary coil and the secondary coil of the coil unit are fabricated of self-welding wire and fixed in a coil case by an elastic material and an ignition control circuit unit is fixed in the coil case by an elastic material. Similarly, the primary coil and the secondary coil are integrally joined by an adhesive. The terminal of the primary coil and the lead of the ignition control circuit unit are joined together by fusion and the joint is partially molded, while the terminal of the secondary coil and the terminal of a high-tension cord outlet are joined together by fusing and the joint is partially molded. Moreover, the coil case is provided with an inner cap such that the fusing and partial molding of the terminals can be conducted on the inner cap, thereby ensuring a high recycle rate and enabling efficient resource recovery and reuse.
Abstract:
An electronic control unit includes a printed wiring board (50), electronic components (51 to 53) mounted on the printed wiring board (50), and a synthetic resin coating (57) formed by injection molding to cover the printed wiring board (50) and the electronic component (51 to 53). The electronic components (51 to 53) are housed in a protective case (75) that can resist pressure and heat during the injection molding of the coating (57). Thus, in the electronic control unit, an electronic component is not damaged by formation of a coating by injection molding so that the electronic control unit can always function normally.
Abstract:
A resin encapsulated electronic component unit and method includes a printed wiring board, mounted electronic components, and a resin coating layer, which covers and encapsulates the electronic components by insert molding. The resin coating layer is formed from a thermoplastic resin. The resin encapsulated electronic component unit includes accessory members, which are molded from the thermoplastic resin. The insert molding is performed by use of molds including cavities in which the board is disposed and hollow portions corresponding to the accessory members and by injecting the thermoplastic resin into the hollow portion and discharging air from the hollow portion so that the thermoplastic resin flows longitudinally of the board. The resin coating layer is disposed on both front and back surfaces of the board and the amount of thermoplastic resin is substantially symmetrically disposed on both front and back surfaces of the board.
Abstract:
A system for detecting reverse rotation of a 4-cycle, internal combustion engine with three or more cylinder for an outboard motor mounted on a boat, whose output is connected to a propeller such that the boat is propelled forward or reverse. In the system, it is determined whether a counted value of crank angle signals generated once every 30 crank angles is a multiple of a predetermined number (e.g., four in six cylinders), when the cylinders are identified and it is determined that engine rotates reverse when the counted value is determined to be not the multiple and the engine is immediately stopped. With this, it becomes possible to accurately detect the reverse rotation of the engine and prevent its further reverse rotation.