Abstract:
An engine ignition control method and system for controlling ignition timing that computes a predicted crankshaft angular velocity based on prior computed and verified crankshaft angular velocity and acceleration and determines a capture window of the next crankshaft position sensor pickup signal for the verification of the predicted crankshaft angular velocity. The ignition control system also utilizes both crankshaft position pickup signals and the intake manifold air pressure measurements for determining the stroke of the combustion cycle in turn providing more accurately timed signals for the fuel injection and ignition systems. During engine starts, the engine ignition control system performs a series of continuous spark-triggering, determines if each spark-triggering being at the correct or incorrect point in the combustion cycle by detecting if there is any engine acceleration and adjusts the generation of the signal for the next spark-triggering accordingly.
Abstract:
A magnetic field sensor for detecting motion of an object includes threshold generation circuitry and processing. Magnetic field sensing elements are configured to generate a magnetic field signal in response to a magnetic field associated with the object. A motion detector responsive to the magnetic field signal and to a threshold signal is configured to generate a detector output signal having edges occurring in response to a comparison of the magnetic field signal and the threshold signal. A speed detector responsive to the detector output signal generates a speed signal indicative of a speed of motion of the object. A threshold generator responsive to the speed signal generates the threshold signal having a level that varies in response to the speed signal.
Abstract:
Provided is a control device for an internal combustion engine, employing a microprocessor to control a load other than an ignition device, the control device being provided to an internal combustion engine in which is installed a magnet generator that has a magneto coil for successively generating, in association with revolution of the internal combustion engine, a first half wave voltage, a second half wave voltage of different polarity than the first half wave voltage, and a third half wave voltage of identical polarity to the first half wave voltage; and the magnet generator employing the second half wave voltage to drive the ignition device. The device is provided with an electricity storage element which draws excess power from the output that is output by the magnet generator for the purpose of driving the ignition device, and which is charged by the first and second half wave voltages, as well as being charged by the second half wave voltage as well at times that the internal combustion engine is in the exhaust stroke, in order to supply power to the load and to the microprocessor. The power source circuit is constituted to use the energy stored in this electricity storage element to generate power source voltage for presentation to the microprocessor and to the load other than an ignition device.
Abstract:
A carburetor to electronic fuel injection conversion distributor is used in conjunction with a compatible engine control unit and a compatible throttle body so that carbureted engines can be converted into electronic fuel injection engines. The conversion distributor includes a stator distributor housing, a rotor shaft assembly, and a top housing as the rotor shaft assembly is rotatably engaged with the stator distributor housing. The rotor shaft assembly can be rotated through a camshaft of an internal combustion engine while the stator distributor housing is secured within the engine bay. The top housing is adjacently attached to the stator distributor housing, where the top housing can be a distributor cap or a distributor cover depending on the ignition system.
Abstract:
An engine ignition control device comprising: a start-up ignition controller having a function for preventing the occurrence of kickback by either delaying an ignition position of an engine or stopping ignition; start-up rotation angle detection means for detecting a rotation angle of a crankshaft of the engine after initiation of a start-up operation of the engine; and switching means for switching control specifics of the start-up ignition controller in accordance with the detected start-up rotation angle so that when the detected start-up rotation angle is less than a set angle, there is created a kickback-preventive effect within a range at which engine startability is not compromised, and when the detected start-up rotation angle is equal to or greater than the set angle, there is created a kickback-preventive effect that is greater than the kickback-preventive effect for when the start-up rotation angle is equal to or less than the set angle.
Abstract:
A control apparatus for an internal combustion engine, includes: a crankshaft; a crank angle detection unit that outputs a crank signal; a generator that rotates in synchronization with the rotation of the crankshaft, and that outputs alternating voltage signals with one-phase; and a control unit, to which the alternating voltage signals are input, that ascertains ignition timings based on the crank signals, performs ignition control so as to spark the internal combustion engine at the ignition timings, determines a polarity of the alternating voltage signal each time the crank signal is detected, ascertains a polarity cycle of the alternating voltage signals based on the determination result of the polarity, and determines that a failure has occurred in the generator when the polarity cycles do not continuously coincide multiple times with the polarity cycles at the time of forward rotation of the crankshaft.
Abstract:
A two-stroke engine includes an ignition module that receives a detection signal from a magnetic sensor for detecting a permanent magnet and transmits an ignition signal to an ignition plug. The permanent magnet is provided at a single position on a flange that rotates synchronously with the magnetic sensor. The magnetic sensor is attached to one of sensor attachments and provided at two positions adjacent to the engine body. The sensor attachments and are so provided as to correspond to a rotational direction of the engine. With such an arrangement, the permanent magnet is less affected by noise because the permanent magnet is disposed at only one position. By changing a position at which the sensor is attached, the engine having common components is enabled to work in the same manner during both of normal rotation and reverse rotation.
Abstract:
An apparatus for producing an ignition spark in an internal combustion engine. The apparatus comprises an inductive ignition device having a primary coil and a secondary coil, flow of current through the primary coil being controlled by an electronic switching element (e.g., a transistor) responsive to a triggering signal. A rotatable body (e.g., the engine flywheel) having detectable features on a periphery thereof is also provided. A sensor device is located adjacent to the rotatable body at a fixed position and is operative to produce an output in response to the detectable features. The apparatus also includes a controller operative to receive an output from the sensor device and responsively produce the triggering signal so as to have a selected dwell time and ignition position.
Abstract:
An ignition timing circuit is disclosed which provides variable fuel ignition timing as a function of the rotational speed of a small internal combustion engine. A measure of the rotational speed of an engine is generated from the shape of pulses generated by a sensor. A timing delay circuit converts this measure of the rotational engine speed into a fuel ignition trigger signal with a controlled delay relative to the engine's angular position. This trigger signal activates a switching device which in turn delivers energy to the engine's spark plug system. A significant benefit of the disclosed ignition timing circuit is its ability to be enclosed in a package which is size and pin-compatible with standard silicon controlled rectifiers.
Abstract:
An engine control device that controls an engine having a brushless motor as a starter motor, wherein the control device comprises a pickup coil that outputs a pulse signal at a crank angle position set in a crank angle section where a load applied to the brushless motor in cranking the engine is light, said brushless motor including a stator, a rotor and a position detecting device that detects rotational angle positions of the rotor to output position detection signals which represent level changes at fixed crank angle positions of the engine, and the control device being constructed so as to identify a crank angle position corresponding to each position where the level of the position detection signal is changed, based on the output signal of the pickup coil and to obtain crank angle information from the level changes of the position detection signals to control ignition timing or the like.