Abstract:
An engine ignition control device comprising: a start-up ignition controller having a function for preventing the occurrence of kickback by either delaying an ignition position of an engine or stopping ignition; start-up rotation angle detection means for detecting a rotation angle of a crankshaft of the engine after initiation of a start-up operation of the engine; and switching means for switching control specifics of the start-up ignition controller in accordance with the detected start-up rotation angle so that when the detected start-up rotation angle is less than a set angle, there is created a kickback-preventive effect within a range at which engine startability is not compromised, and when the detected start-up rotation angle is equal to or greater than the set angle, there is created a kickback-preventive effect that is greater than the kickback-preventive effect for when the start-up rotation angle is equal to or less than the set angle.
Abstract:
An engine ignition control device comprising: a start-up ignition controller having a function for preventing the occurrence of kickback by either delaying an ignition position of an engine or stopping ignition; start-up rotation angle detection means for detecting a rotation angle of a crankshaft of the engine after initiation of a start-up operation of the engine; and switching means for switching control specifics of the start-up ignition controller in accordance with the detected start-up rotation angle so that when the detected start-up rotation angle is less than a set angle, there is created a kickback-preventive effect within a range at which engine startability is not compromised, and when the detected start-up rotation angle is equal to or greater than the set angle, there is created a kickback-preventive effect that is greater than the kickback-preventive effect for when the start-up rotation angle is equal to or less than the set angle.
Abstract:
A capacitor discharge type internal combustion engine ignition device is provided; wherein a capacitor is charged by a positive half-wave output voltage of an exciter coil; wherein an ignition is performed by giving an ignition signal to a thyristor from an ignition control portion for steady state; wherein a pulse signal obtained by waveform-shaping a negative half-wave output voltage of the exciter coil or the signal generated by a signal generator is given to the thyristor as the ignition signal through an ignition control portion for extremely low speed state so as to perform an ignition at a starting time and at an extremely low speed state; and wherein a power supply circuit which gives a power supply voltage to the ignition control portion for steady state and the power supply circuit which gives the power supply voltage to the ignition control portion for extremely low speed state are provided separately whereby the ignition signal for the starting time and the extremely low speed state can be generated at low speed so that the starting characteristic of the engine is improved.
Abstract:
A valve nozzle is used at an end of a hot runner or an injection molding machine for an injection molding. The valve nozzle comprises a cylinder as a body of the nozzle, and a piston. The cylinder has a gate and has a larger inner diameter at the rear end and a smaller inner diameter at the front end. The piston has a passage in the piston and has a large outer diameter at the rear end and a smaller outer diameter at the front end.
Abstract:
A power supply apparatus comprised of a bridge circuit made up of rectification diodes and MOSFETs for rectifying an output of a generator through a full-wave rectifier circuit comprised of rectification diodes and parasitic diodes of the MOSFETs and obtaining a supply voltage of a fuel injection apparatus, the power supply apparatus being comprised of an FET control section which turns ON/OFF the MOSFETs to step up the output voltage of the generator and a transistor provided for each MOSFET, which is set in an ON-state for a period during which a reverse voltage is applied to a parasitic diode of each MOSFET and set in an OFF-state for a period during which a forward voltage is applied to the parasitic diode of each MOSFET, wherein a control voltage for turning ON the MOSFET is given between the gate and source of the corresponding MOSFET for a period during which each transistor is in an OFF-state.
Abstract:
An internal combustion engine control system comprising the steps of supplying a reference position detection pulse and a low revolution ignition position detection pulse generated by a single pulser coil of a crank shaft sensor at a reference position of each of cylinders and a low revolution ignition position thereof through respective waveform shaping circuits to a CPU of an electronic control unit and controlling the internal combustion engine so that all the cylinders are simultaneously ignited at an extreme low revolution area where it cannot be judged which of the cylinders each of the pulses generated by the crank shaft sensor corresponds to when the crank shaft sensor generates every reference position detection pulse near a top dead center in a compression stroke of each of the cylinders.
Abstract:
A power supply apparatus comprised of a bridge circuit made up of rectification diodes and MOSFETs for rectifying an output of a generator through a full-wave rectifier circuit comprised of rectification diodes and parasitic diodes of the MOSFETs and obtaining a supply voltage of a fuel injection apparatus, the power supply apparatus being comprised of an FET control section which turns ON/OFF the MOSFETs to step up the output voltage of the generator and a transistor provided for each MOSFET, which is set in an ON-state for a period during which a reverse voltage is applied to a parasitic diode of each MOSFET and set in an OFF-state for a period during which a forward voltage is applied to the parasitic diode of each MOSFET, wherein a control voltage for turning ON the MOSFET is given between the gate and source of the corresponding MOSFET for a period during which each transistor is in an OFF-state.
Abstract:
A capacitor discharge ignition device for an internal combustion engine including an ignition capacitor that is charged with a positive half cycle of an output voltage of an exciter coil, a thyristor that is triggered by a negative half cycle of an output voltage of the exciter coil when the internal combustion engine is ignited to discharge charges stored in the ignition capacitor through a primary coil of an ignition coil, and a reverse bias circuit that applies a reverse bias voltage between a gate and a cathode of the thyristor when a current flowing from the exciter coil through the thyristor is detected and when a charging current of the ignition capacitor is detected.
Abstract:
A batteryless fuel injection apparatus for a multi-cylinder internal combustion engine adapted to generate a start injection command signal for each of cylinders in predetermined order whenever a reference pulse signal is generated by a signal generation device in case that which cylinder the reference pulse signal corresponds to cannot be judged to inject a fuel from the injector for each of the cylinders and to generate the injection command signal for each of the cylinders at a regular injection start position after which cylinder the reference pulse signal corresponds to is judged.