摘要:
A photovoltaic cell includes a p-type copper-indium-gallium-selenide absorber layer, where a content of Cu, In, and Ga in a first portion of the p-type copper-indium-gallium-selenide absorber layer satisfies the equation Cu/(In+Ga)≦0.3, and where the content is measured in atomic percent.
摘要:
An electroless plating system includes a plating solution, and controlling reducing agents in the plating solution for deposition over outlier features smaller than about five hundred nanometers and isolated by about one thousand nanometers.
摘要:
A metal- and metalloid-free nanolaminate dielectric film can be formed according to a pulsed layer deposition (PDL) process. A metal- and metalloid-free compound is used to catalyze the reaction of silica deposition by surface reaction of alkoxysilanols. Films can be grown at rates faster than 30 nm per exposure cycle. The invention can be used for the deposition of both doped (e.g., PSG) and undoped silicon oxide films. The films deposited are conformal, hence the method can accomplish void free gap-fill in high aspect ratio gaps encountered in advanced technology nodes (e.g., the 45 nm technology node and beyond), and can be used in other applications requiring conformal dielectric deposition.
摘要:
Methods of forming conformal films with increased density are described. The methods may be used to improve gap fill in semiconductor device manufacturing by eliminating seams and voids. The methods involve operating at high reactant partial pressure. Additionally, film properties may be further enhanced by optimizing the temperature of the substrate during exposure to the metal-containing and/or silicon-containing precursor gases commonly used in conformal film deposition techniques such as ALD and PDL.
摘要:
A method for using ALD and RVD techniques in semiconductor manufacturing to produce a smooth nanolaminate dielectric film, in particular for filling structures with doped or undoped silica glass, uses dynamic process conditions. A dynamic process using variable substrate (e.g., wafer) temperature, reactor pressure and/or reactant partial pressure, as opposed to static process conditions through various cycles, can be used to minimize film roughness and improve gap fill performance and film properties via the elimination or reduction of seam occurrence. Overall film roughness can be reduced by operating the initial growth cycle under conditions which optimize film smoothness, and then switching to conditions that will enhance conformality, gap fill and film properties for the subsequent process cycles. Film deposition characteristics can be changed by modulating one or more of a number of process parameters including wafer temperature, reactor pressure, reactant partial pressure and combinations of these.
摘要:
An electroless deposition system includes a deposition solution, and saturating the deposition solution with an oxygen concentration in a range from about two thousand parts per million to about twenty thousand parts per million.
摘要:
A plating system comprises a plating solution and an apparatus for control of the plating solution, the apparatus including a Raman spectrometer for measurement of organic components, a visible light spectrometer for measurement of metallic components, and a pH probe. The plating solution can be sampled continuously or at intervals. Dosing of the plating solution adjusts for components consumed or lost in the plating process. The method of dosing is based on maintaining a desired composition of the plating solution.
摘要:
A method employing atomic layer deposition rapid vapor deposition (RVD) conformally deposits a dielectric material on small features of a substrate surface. The resulting dielectric film is then annealed using a high density plasma (HDP) at a temperature under 500° C. in an oxidizing environment. The method includes the following three principal operations: exposing a substrate surface to an aluminum-containing precursor gas to form a substantially saturated layer of aluminum-containing precursor on the substrate surface; exposing the substrate surface to a silicon-containing precursor gas to form the dielectric film; and annealing the dielectric film in a low temperature oxygen-containing high density plasma. The resulting film has improved mechanical properties, including minimized seams, improved WERR, and low intrinsic stress, comparable to a high temperature annealing process (˜800° C.), but without exceeding the thermal budget limitations of advanced devices.
摘要:
An method employing atomic layer deposition (ALD) and rapid vapor deposition (RVD) techniques conformally deposits a dielectric material on small features of a substrate surface. The resulting dielectric film has a low dielectric constant and a high degree of surface smoothness. The method includes the following three principal operations: exposing a substrate surface to an aluminum-containing precursor gas to form a saturated layer of aluminum-containing precursor on the substrate surface; exposing the substrate surface to an oxygen-containing gas to oxidize the layer of aluminum-containing precursor; and exposing the substrate surface to a silicon-containing precursor gas to form the dielectric film. Generally an inert gas purge is employed between the introduction of reactant gases to remove byproducts and unused reactants. These operations can be repeated to deposit multiple layers of dielectric material until a desired dielectric thickness is achieved.
摘要:
A composition selected from the group consisting of bis(tert-butoxy)(isopropoxy)silanol, bis(isopropoxy)(tert-butoxy)silanol, bis(tert-pentoxy)(isopropoxy)silanol, bis(isopropoxy)(tert-pentoxy)silanol, bis(tert-pentoxy)(tert-butoxy)silanol, bis(tert-butoxy)(tert-pentoxy)silanol and mixtures thereof; its use to form a metal or metalloid silicate layer on a substrate and the synthesis of the mixed alkoxysilanols.