Abstract:
An apparatus for controlling the temperature of a reaction mixture contained in a chamber of a reaction vessel comprises a thermal surface for contacting a flexible wall of the chamber and an automated machine for increasing the pressure in the chamber. The pressure increase in the chamber is sufficient to force the flexible wall to conform to the thermal surface for good thermal conductance. The apparatus also includes at least one thermal element for heating or cooling the surface to induce a temperature change within the chamber.
Abstract:
An apparatus for controlling the temperature of a reaction mixture contained in a chamber of a reaction vessel comprises a thermal surface for contacting a flexible wall of the chamber and an automated machine for increasing the pressure in the chamber. The pressure increase in the chamber is sufficient to force the flexible wall to conform to the thermal surface for good thermal conductance. The apparatus also includes at least one thermal element for heating or cooling the surface to induce a temperature change within the chamber.
Abstract:
An apparatus for controlling the temperature of a reaction mixture contained in a chamber of a reaction vessel comprises a thermal surface for contacting a flexible wall of the chamber and an automated machine for increasing the pressure in the chamber. The pressure increase in the chamber is sufficient to force the flexible wall to conform to the thermal surface for good thermal conductance. The apparatus also includes at least one thermal element for heating or cooling the surface to induce a temperature change within the chamber.
Abstract:
A device for providing user input to a computer includes a base member with a tracking sensor for detecting motion of the base member and a vertical grip member that extends upward from the base member. A scroll wheel is rotatably mounted in the grip member and oriented so as to be rotatable by a substantially arc-like movement of a thumb of a hand holding the grip member.
Abstract:
The present invention provides an apparatus for performing heat-exchanging chemical reactions, such as nucleic acid amplification. The apparatus includes a reaction vessel having a chamber for holding a sample for chemical reaction and optical detection. The vessel has a rigid frame defining the side walls of the chamber, and flexible sheets attached to opposite sides of the frame to form opposing major walls of the chamber. The frame further includes a port and a channel connecting the port to the chamber. The temperature of the sample is controlled by opposing plates positioned to receive the chamber of the vessel between them. The apparatus also includes a plunger which is inserted into the channel of the vessel to seal the port and increase pressure in the chamber. The increased pressure forces the flexible major walls of the chamber to contact and conform to the surfaces of the plates, thus ensuring optimal thermal conductance between the plates and the chamber. The apparatus also includes thermal elements for heating or cooling the plates, as well as optics for detecting analytes in the sample.
Abstract:
The present invention provides a reaction vessel and apparatus for performing heat-exchanging reactions. The vessel has a chamber for holding a sample, the chamber being defined by a plurality of walls, at least two of the walls being light transmissive to provide optical windows to the chamber. The apparatus comprises at least one heating surface for contacting at least one of the plurality of walls, a heat source for heating the surface, and optics positioned to optically interrogate the chamber while the heating surface is in contact with at least one of the plurality of walls. The optics include at least one light source for transmitting light to the chamber through a first one of the light transmissive walls and at least one detector for detecting light exiting the chamber through a second one of the light transmissive walls.
Abstract:
A method and apparatus for compensating for multiple thermal asperity events in a sector. The present invention provides for the detection, recording and recovery from errors caused by multiple thermal asperities occurring in a single sector. The method includes detecting thermal asperity events in a sector, setting a flag indicating each occurrence of a thermal asperity event in the sector, maintaining a count of the detected thermal asperity events in the sector and recording a byte location for each of the detected thermal asperity events in the sector. The method further includes performing a data recovery procedure in response to the detected thermal asperity events. The data recovery procedure is performed using the flag settings and a location corresponding to the detected thermal asperity events. The data recovery procedure is performed using the count of the detected thermal asperity events. The setting of a flag includes setting a bit in a register. The setting of a bit indicates a start byte location for a thermal asperity event. The maintaining a count of the detected thermal asperity events in the sector includes the setting of a bit in the register for each detected thermal asperity event, the count being equal to a number of bits set in the register. The recording a location for each of the detected thermal asperity events in the sector includes setting a bit in a register, the bit position being associated with the location of the asperity event. The maintaining a count of the detected thermal asperity events in the sector includes setting a bit in a register for each detected thermal asperity events, the count being equal to a number of bits set in the register.
Abstract:
A system to control the interior temperature and particularly the slider and disk temperature of hard disk drives that utilizes the spindle motor to spin a fanning structure. The fanning structure is preferably integrated into the hard disk drive and initiates a cooling air stream that is directed within the contained interior of the hard disk drive toward a Peltier-element that drains the thermal energy into the surrounding environment. In an alternate embodiment, the fanning structure initiates an exterior air stream that provides a cooling air stream at the outside of the Peltier-element. The Peltier-element is controllable to decouple operational temperature variations from environmental temperature variations.
Abstract:
A device for providing user input to a computer includes a base member with a tracking sensor for detecting motion of the base member and a vertical grip member that extends upward from the base member. A scroll wheel is rotatably mounted in the grip member and oriented so as to be rotatable by a substantially arc-like movement of a thumb of a hand holding the grip member.
Abstract:
A device for providing user input to a computer has a trigger disposed on a forward surface of a vertically oriented grip member so that the trigger is operable by a first finger of a user's hand, and button input signals are generated in response to operation of the trigger. A scroll wheel is rotatably mounted on the grip member and is positioned so as to be operable by the user's thumb, and scroll input signals are generated in response to operation of the scroll wheel.