Abstract:
A method and system are disclosed for utilizing a session processor having multiple internal states to control communication sessions occurring within a wireless and satellite network that includes at least one control interface. First, a message is received from the control interface and is then processed. Next, an internal state of the session processor is changed such that a response message may be formulated. Thereafter, internal tables and counters are updated in response to the message. Finally, the response message is delivered to the control interface, such that the session processor may be utilized to maintain comprehensive and seamless control of communications sessions occurring within the wireless and satellite network.
Abstract:
Systems, methods, and computer program products communicating the state of a wireless user device in a wireless domain to an application server in an internet protocol (IP) domain are disclosed. According to one aspect, a system for communicating the state of a wireless user device in a wireless domain to an application server in an Internet protocol domain includes a wireless user device configured to operate in a wireless domain and configured to detect a change of its state, and, in response to detecting the change of state, to send a message service message, the message service message containing status information indicating a current state of the wireless user device. The system also includes an application server configured to operate in the IP domain and for receiving the status information indicating a state of the wireless user device and for providing at least one service to the wireless user device based on the current state of the wireless user device.
Abstract:
A wireless mobility management system including a visitor location register configured to store a visiting user profile and communicate with a mobile switching center to route a wireless call supporting a user-session, a home location register configured to store a home user profile and update a user location associated with the home user profile, and a wireless media gateway (WMG) configured to create a user-session interconnection between a first wireless network and at least one of a second wireless network, a wireline packet network and a public-switched telephone network, including providing physical resources for the user-session. A WMG controller integrated with a wireless softswitch is configured to control the WMG to allocate resources and establish connections as required by the user session. A performance-based mobility manager is configured to receive user-session performance data from the WMG and make a handoff decision based on the performance data.
Abstract:
A wireless mobility management system including a visitor location register configured to store a visiting user profile and communicate with a mobile switching center to route a wireless call supporting a user-session, a home location register configured to store a home user profile and update a user location associated with the home user profile, and a wireless media gateway (WMG) configured to create a user-session interconnection between a first wireless network and at least one of a second wireless network, a wireline packet network and a public-switched telephone network, including providing physical resources for the user-session. A WMG controller integrated with a wireless softswitch is configured to control the WMG to allocate resources and establish connections as required by the user session. A performance-based mobility manager is configured to receive user-session performance data from the WMG and make a handoff decision based on the performance data.
Abstract:
Systems, methods, and computer program products communicating the state of a wireless user device in a wireless domain to an application server in an internet protocol (IP) domain are disclosed. According to one aspect, a system for communicating the state of a wireless user device in a wireless domain to an application server in an Internet protocol domain includes a wireless user device configured to operate in a wireless domain and configured to detect a change of its state, and, in response to detecting the change of state, to send a message service message, the message service message containing status information indicating a current state of the wireless user device. The system also includes an application server configured to operate in the IP domain and for receiving the status information indicating a state of the wireless user device and for providing at least one service to the wireless user device based on the current state of the wireless user device.
Abstract:
A number of user IDs are assigned to each wireless device. The number of user IDs required is based on the type of information transmitted (e.g., video, voice, or data). The user ID's generate the orthogonal Walsh codes used to cover a data signal to be transmitted. Each Walsh code is 2n-bits in length and the memory size is 2n×2n where n is the number of bits in the Walsh code. Each unique user ID addresses a memory to generate a unique Walsh code corresponding only to that user ID. The orthogonal codes output from the memory cover the information to be transmitted. This results in the transmitted signal being orthogonal to other users and also orthogonal within the transmitting user's own signal bursts.
Abstract:
The present invention assigns a pair of user ID's to each user. The user ID's are used as addresses to access two orthogonal Walsh codes in a memory. Each Walsh code is 2n-bits in length and the memory size is 2n×2n. The orthogonal codes are then used to cover the information symbols for transmission. This results in the transmitted signal being orthogonal to other users and also orthogonal within the transmitting user's own signal bursts.
Abstract:
A wireless communication system includes a plurality of base stations, a plurality of base station controllers and a plurality of mobile switching centers. The plurality of base stations each support wireless communications within a respective cell and service load therein relating to subscribing units operating therein. Each of the base station controllers couples to a plurality of base stations and each of the mobile switching centers couples to at least one base station controller. The plurality of base station controllers and the plurality of mobile switching centers are managed to dynamically route load between the base station controllers and the mobile switching centers in an effort to equalize load on the plurality of mobile switching centers. At least one base station controller of the plurality of base station controllers may route its load to a first mobile switching center during a first period and route its load to the second mobile switching center during a second period. The first period and the second period may correspond to differing time periods and/or differing days. Such periods may be determined based upon historical loadings of the wireless communication system and simulation results. However, in other operations, the load is switched based upon actual system loading and the periods are determined according to the actual system loading. In other operations of the wireless communication system, a base station controller routes its load concurrently to both a first mobile switching center and a second mobile switching center of the plurality of mobile switching centers. In such operations, a first amount of load is routed to the first mobile switching center and a second amount of load routed to the second mobile switching center, such levels determined based upon loading of at least one of the first mobile switching center and the second mobile switching center.
Abstract:
A satellite communication system provides multicast messaging services to subscriber units. Upon receipt of a multicast communication page from a satellite communication system network, a subscriber unit waits for a random delay period and then responds with an acknowledge signal. Based upon the time of receipt of the acknowledge signal, e.g., within one of a plurality of time periods, the satellite communication system network assigns the subscriber unit to one of a plurality of traffic channels. The satellite communication system infrastructure then sends a multicast communication message to the subscriber unit on the assigned traffic channel. The subscriber unit then waits for a random delay period and then responds with an acknowledge signal. The satellite communication system network then receives the acknowledge signal. Each of a plurality of subscriber units introduces a random delay before transmitting an acknowledge signal so that the satellite communication system network may determine which of the subscriber units received the multicast communication system message.
Abstract:
A communication system and methodology are implemented to anticipate periodic or predictable disruptions of communications in a satellite communication network. The communication system and methodology then compensate for this disruption in an appropriate manner. Such prediction and compensation actions are performed for a selected group of subscribers ("premium" subscribers) who wish to originate or receive telephone calls during the period of time that the outage or disruption occurs. To compensate for such predictable outages, the communication network takes advantage of the multiple gateways typically implemented within mobile satellite communicate networks. Rather than using the multiple gateways for redundancy, the communication network and methodology recognize that the multiple gateways may also be used for the alternate routing of telephone calls, particularly during a period of time in which the outage occurs. Through this methodology, a "virtual routing" operation may be executed.