Abstract:
A hard coating for a cutting tool being highly resistant to both wear and seizure; and a cutting tool coated with the hard coating. This hard coating is a multilayer film including two or more of the following layered in alternation: first coating layers including AgaCu1-a; and second coating layers including a nitride, oxide, carbide, carbonitride, or boride containing at least one element selected from among group IVA, VA, and VIA elements, aluminum, and silicon. Since the atomic proportion for the first coating layers is between 0.2 and 0.4, inclusive, the layering pitch of the first and second coating layers is between 0.2 and 100 nm, inclusive, and the total thickness is between 0.2 and 10.0 μm, inclusive, the coefficient of friction and cutting resistance can be reduced by the inclusion of silver in the coating, and provide a hard coating that exhibits superb lubricity and resistance to seizure.
Abstract:
According to one embodiment, a magnetic recording medium includes: a data area on which a plurality of first magnetic dots are arranged at predetermined positions to record information; a servo area on which a plurality of second magnetic dots for specifying the positions of said plurality of first magnetic dots are arranged at predetermined positions; and servo frames configured so that a frequency of said servo frames is 2N per circumference of said medium having a radius, that said servo frames are radially discontinuous, and that said servo frame and a space-area, on which no servo frames exist, are alternately radially arranged at a cycle W.
Abstract:
A manufacturing method of a magnetic recording medium according to one embodiment includes forming a mask layer having a pattern regularly arranged in a longitudinal direction on a magnetic recording medium containing a substrate and a magnetic recording layer, forming a recording portion having a magnetic pattern and a non-recording portion by patterning the magnetic recording layer, and submitting the mask layer to a peeling liquid to peel the mask layer. The mask layer contains a lamination layer of a lift-off layer, a first hard mask, and a second hard mask. The second hard mask is formed of a material that is different from the material of the first hard disk and the material is dissolvable in the same peeling liquid as the peeling liquid that dissolves the lift-off layer.
Abstract:
According to one embodiment, a method of manufacturing a patterned medium includes depositing a magnetic recording layer and applying an ultraviolet curable resin on both surfaces of a medium substrate, pressing a first resin stamper and a second resin stamper each including patterns of recesses and protrusions, corresponding to a patterned medium, against both surfaces of the medium substrate in such a manner that a direction from a center of the medium substrate toward a center of the first resin stamper is off-oriented from a direction from the center of the medium substrate toward a center of the second resin stamper to imprint the patterns of recesses and protrusions on the ultraviolet curable resin, and irradiating the ultraviolet curable resin with an ultraviolet ray through each of the first and second resin stampers to cure the ultraviolet curable resin.
Abstract:
According to one embodiment, a magnetic recording apparatus configured to record information onto a magnetic recording medium by a shingled write recording method, the magnetic recording apparatus includes: a recording head configured to cover a plurality of dot arrays and an end portion of which is situated at one dot array of a recording target; an actuator configured to move the recording head by one array after the recording to one dot array by the recording head; and a controller configured to perform recording compensation of the magnetic dot based on prestored recording data of a peripheral dot of a magnetic dot when input user data is recorded to the magnetic dot.
Abstract:
A magnetic recording medium is presented that includes protruded magnetic patterns formed on a substrate, and a nonmagnetic material filled in recesses between the magnetic patterns in which an oxygen concentration thereof is higher at a surface side than at a substrate side. The nonmagnetic material is at least one selected from the group consisting of Si, SiC, SiC—C, SiOC, SiON, Si3N4, Al, AlxOy, Ti and TiOx.
Abstract translation:提出了一种磁记录介质,其包括形成在基板上的突出的磁图案,以及填充在表面侧的氧浓度高于基板侧的磁性图案之间的凹部中的非磁性材料。 非磁性材料是选自Si,SiC,SiC-C,SiOC,SiON,Si 3 N 4,Al,Al x O y,Ti和TiO x中的至少一种。
Abstract:
A manufacturing method of a magnetic recording medium according to one embodiment includes forming a mask layer having a pattern regularly arranged in a longitudinal direction on a magnetic recording medium containing a substrate and a magnetic recording layer, forming a recording portion having a magnetic pattern and a non-recording portion by patterning the magnetic recording layer, and submitting the mask layer to a peeling liquid to peel the mask layer. The mask layer contains a lamination layer of a lift-off layer, a first hard mask, and a second hard mask. The second hard mask is formed of a material that is different from the material of the first hard disk and the material is dissolvable in the same peeling liquid as the peeling liquid that dissolves the lift-off layer.
Abstract:
According to one embodiment, an ultraviolet-curing resin material for pattern transfer contains at least one of 2-methyl-2-adamantyl acrylate, 2-ethyl-2-adamantyl acrylate, and 1,3-adamantanedimethanol diacrylate, isobornyl acrylate, polyfunctional acrylate, and a polymerization initiator, or contains at least one of the acrylates described above, a polymerization initiator, and fluorine-based alcohol.
Abstract:
According to one embodiment, there is provided a magnetic disk apparatus having a magnetic disk having magnetic dot lines each including magnetic dots arrayed at equal intervals in a down track direction, and a read/write head which uses a plurality of adjacent magnetic dot lines as one track and sequentially performs read and write on the magnetic dots included in the magnetic dot lines constituting the track, in which the magnetic dots included in each of the magnetic dot lines in each track of the magnetic disk are displaced in the down track direction from the magnetic dots included in the adjacent dot line in the track depending on a possible skew angle between the read/write head and the track so that the magnetic dots are sequentially accessed by the read/write head.
Abstract:
According to one embodiment, a magnetic recording apparatus configured to record information onto a magnetic recording medium by a shingled write recording method, the magnetic recording apparatus includes: a recording head configured to cover a plurality of dot arrays and an end portion of which is situated at one dot array of a recording target; an actuator configured to move the recording head by one array after the recording to one dot array by the recording head; and a controller configured to perform recording compensation of the magnetic dot based on prestored recording data of a peripheral dot of a magnetic dot when input user data is recorded to the magnetic dot.