Abstract:
A manufacturing method of a magnetic recording medium includes follows: forming a magnetic recording layer on a substrate; forming an under layer and a metal release layer that forms an alloy with the under layer on the magnetic recording layer in this order and forming an alloyed release layer by alloying the under layer and the metal release layer; forming a mask layer on the alloyed release layer; forming a resist layer on the mask layer; providing a protrusion-recess pattern by patterning the resist layer; transferring the protrusion-recess pattern to the mask layer; transferring the protrusion-recess pattern to the alloyed release layer; transferring the protrusion-recess pattern to the magnetic recording layer; dissolving the alloyed release layer by using a stripping solution and removing a layer formed on the alloyed release layer from an upper side of the magnetic recording layer.
Abstract:
In a removing step, a phase-separated release solution including a first phase containing a first solvent capable of dissolving a release layer and a second phase containing a second solvent having a property of separating from the first solvent is prepared, and a patterned magnetic recording medium is dipped in the first phase together with a release layer, mask layer, and resist layer remaining on a magnetic recording layer, thereby removing the release layer. After that, the patterned magnetic recording medium is moved to the second phase, and separated from the first phase containing the release layer and the layers remaining on the release layer.
Abstract:
A manufacturing method of a magnetic recording medium includes steps of forming a magnetic recording layer, a first mask layer, a second mask layer containing silicon as primary component, a strip layer, a third mask layer, and a resist layer, a step of patterning the resist layer to provide a pattern, steps of transferring the pattern to the third mask layer, to the strip layer, and to the second mask layer, a step of removing the strip layer by wet etching and of stripping the third mask layer and the resist layer above the magnetic recording layer, steps of transferring the pattern to the first mask layer and to the magnetic recording layer, and a step of stripping the first mask layer remaining on the magnetic recording layer.
Abstract:
According to one embodiment, a recording head includes a main pole configured to apply a recording magnetic field to a recording medium, a trailing shield opposed to the main pole with a gap therebetween, a spin-torque oscillator at least a part of which is located between the main pole and the trailing shield and configured to apply a high-frequency magnetic field to the recording medium, and an auxiliary oscillator configured to apply an auxiliary magnetic field to the spin-torque oscillator.
Abstract:
According to one embodiment, a spin torque oscillator includes a field generation layer, a spin injection layer including a first layer and a second layer, and an interlayer interposed between the field generation layer and the spin injection layer, wherein the first layer is interposed between the second layer and the interlayer and includes a (001)-oriented Heuslar magnetic alloy or a (001)-oriented magnetic material having a body-centered cubic lattice structure.
Abstract:
According to one embodiment, a head gimbal assembly includes a magnetic head for perpendicular, a suspension supporting the magnetic head, and a heating module configured to locally heat a recording area of the recording medium. A head section of the magnetic head includes a magnetic core including a main pole and a return pole forming a magnetic circuit in conjunction with the main pole, a coil configured to excite magnetic flux in the magnetic circuit, and a thermal conductor having thermal conductivity higher than thermal conductivity of the recording medium and including a heat absorbing portion configured to remove heat from the recording medium, and a contact portion configured to contact airflow produced, as the recording medium rotates, at a position other than a facing surface of a slider opposed to the recording medium and radiate heat.
Abstract:
According to one embodiment, a magnetic recording device includes: a magnetic recording medium provided with data regions for data recording; a light output module which outputs an optical signal to be applied to a recording position where recording data is recorded of the data regions; a write head which records the recoding data at the recording position magnetically; a light quantity setting module which sets a light quantity value of the optical signal output from the light output module; a heat-assisted recording controller which performs a control so that the recording data is recorded by the write head at the recording position which is heat-assisted by applying an optical signal with the set light quantity value; and a controller which adjusts the light quantity value of the optical signal set by the light quantity setting module using the recording position being a part of the data regions.
Abstract:
According to one embodiment, a magnetoresistive element includes a stack and a pair of electrodes that allows electric current to flow through the stack in a direction perpendicular to a surface of the stack. The stack includes a cap layer, a magnetization pinned layer, a magnetization free layer provided between the cap layer and the magnetization pinned layer, a tunneling insulator provided between the magnetization pinned layer and the magnetization free layer, and a functional layer provided within the magnetization pinned layer, between the magnetization pinned layer and the tunneling insulator, between the tunneling insulator and the magnetization free layer, within the magnetization free layer, or between the magnetization free layer and the cap layer. The functional layer includes an oxide including at least one element selected from Zn, In, Sn and Cd and at least one element selected from Fe, Co and Ni.
Abstract:
A magnetic recording medium is provided, which has at least one soft magnetic layer, at least one seed layer, at least one underlayer and at least one perpendicular magnetic recording layer, and is characterized in that the or each seed layer is comprised of a covalently bonded material. The covalently bonded material preferably predominantly comprises a nitride having a hexagonal crystal structure, more preferably, predominantly comprises aluminum nitride having a hexagonal wurtzite crystal structure. This magnetic recording medium is superior in recording and reproducing an information with high density.
Abstract:
A magnetic recording head includes a magnetic pole, a spin torque oscillator, a first shield and a second shield. The magnetic pole has an air-bearing surface. The spin torque oscillator is provided so that a first side of the spin torque oscillator faces the magnetic pole in a first direction parallel to the air-bearing surface. The first shield includes a granular magnetic material, and is provided so that two portions of the first shield sandwich the spin torque oscillator in a second direction which is parallel to the air-bearing surface and perpendicular to the first direction. The second shield is provided on a second side of the spin torque oscillator opposite to the first side.