Abstract:
Provided is a method of fabricating a semiconductor device. The method includes providing a device substrate having a front side, a back side, and a first edge portion, forming a material layer over a portion of the front side of the device substrate, trimming the first edge portion, removing the material layer, bonding the front side of the device substrate to a carrier substrate, thinning the device substrate from the back side, and trimming a second edge portion of the thinned device substrate.
Abstract:
Provided is an apparatus and a method of holding a device. The apparatus includes a wafer chuck having first and second holes that extend therethrough, and a pressure control structure that can independently and selectively vary a fluid pressure in each of the first and second holes between pressures above and below an ambient pressure. The method includes providing a wafer chuck having first and second holes that extend therethrough, and independently and selectively varying a fluid pressure in each of the first and second holes between pressures above and below an ambient pressure.
Abstract:
Provided is a method of fabricating a semiconductor device. The method includes providing a device substrate having a front side, a back side, and a first edge portion, forming a material layer over a portion of the front side of the device substrate, trimming the first edge portion, removing the material layer, bonding the front side of the device substrate to a carrier substrate, thinning the device substrate from the back side, and trimming a second edge portion of the thinned device substrate.
Abstract:
A resonant converter comprising: a controllable current source; a resonant tank circuit coupled to the current source; and an isolated buck-type converter coupled to the resonant tank circuit, the isolated buck-type converter having an output, wherein the resonant tank circuit enables switches in the isolated buck-type converter to switch under soft-switching conditions. In some embodiments, the controllable current source is a switch-mode-type current source. In some embodiments, the isolated buck-type converter comprises a half-bridge converter. In some embodiments, the isolated buck-type converter comprises a full-bridge converter. In some embodiments, the isolated buck-type converter comprises a push-pull converter.
Abstract:
Provided is a wafer level packaging. The packaging includes a first semiconductor wafer having a transistor device and a first bonding layer that includes a first material. The packaging includes a second semiconductor wafer having a second bonding layer that includes a second material different from the first material, one of the first and second materials being aluminum -based, and the other thereof being titanium-based. Wherein a portion of the second wafer is diffusively bonded to the first wafer through the first and second bonding layers.
Abstract:
The present disclosure provides various embodiments of a via structure and method of manufacturing same. In an example, a via structure includes a via having via sidewall surfaces defined by a semiconductor substrate. The via sidewall surfaces have a first portion and a second portion. A conductive layer is disposed in the via on the first portion of the via sidewall surfaces, and a dielectric layer is disposed on the second portion of the via sidewall surfaces. The dielectric layer is disposed between the second portion of the via sidewall surfaces and the conductive layer. In an example, the dielectric layer is an oxide layer.
Abstract:
The present disclosure provides various embodiments of a via structure and method of manufacturing same. In an example, a via structure includes a via having via sidewall surfaces defined by a semiconductor substrate. The via sidewall surfaces have a first portion and a second portion. A conductive layer is disposed in the via on the first portion of the via sidewall surfaces, and a dielectric layer is disposed on the second portion of the via sidewall surfaces. The dielectric layer is disposed between the second portion of the via sidewall surfaces and the conductive layer. In an example, the dielectric layer is an oxide layer.
Abstract:
Provided is a method for fabricating a semiconductor device that includes providing a semiconductor substrate having a front side and a backside, where active or passive devices are formed in the front side, rotating the semiconductor substrate, and etching the backside of the semiconductor substrate by introducing a first etchant while the substrate is rotated, the first etchant including an R—COOH.
Abstract:
The present disclosure provides a method of bonding a plurality of substrates. In an embodiment, a first substrate includes a first bonding layer. The second substrate includes a second bonding layer. The first bonding layer includes silicon; the second bonding layer includes aluminum. The first substrate and the second substrate are bonded forming a bond region having an interface between the first bonding layer and the second bonding layer. A device having a bonding region between substrates is also provided. The bonding region includes an interface between a layer including silicon and a layer including aluminum.
Abstract:
The present disclosure provides a method of bonding a plurality of substrates. In an embodiment, a first substrate includes a first bonding layer. The second substrate includes a second bonding layer. The first bonding layer includes silicon; the second bonding layer includes aluminum. The first substrate and the second substrate are bonded forming a bond region having an interface between the first bonding layer and the second bonding layer. A device having a bonding region between substrates is also provided. The bonding region includes an interface between a layer including silicon and a layer including aluminum.