Abstract:
A half bridge resonant converter comprises a half bridge inverter having a high side switch and a low side switch with an output defined from a node between the high side switch and the low side switch. The output connects to a resonant circuit. There are separate control circuits for generating the gate drive signals for controlling the switching of the high side switch and low side switch, in dependence on an electrical feedback parameter, each with different reference voltage supplies.
Abstract:
A voltage control apparatus includes a boost converter configured to convert an input voltage to a voltage equal to or higher than a first voltage in an operative state and directly output the input voltage in an inoperative state, a buck-boost converter coupled with the boost converter in parallel and configured to convert the input voltage to a second voltage lower than the first voltage, a memory, and a processor coupled to the memory and configured to keep the buck-boost converter in the operative state, set the boost converter to the inoperative state when the input voltage is equal to or higher than the first voltage, and change the boost converter to the operative state when the input voltage is lower than the first voltage.
Abstract:
An inductive power transfer circuit or inductive rotary joint has an inductive rotating coupler with a primary side and a primary winding rotatably arranged against a secondary side and a secondary winding. The secondary side is connected via a rectifier to a load. The stray inductance of the coupler together with a resonance capacitor a series resonance circuit having a series resonance frequency. An inverter in a full bridge circuit is provided for converting a DC input voltage into an AC voltage. The inverter is operable in a full bridge mode to deliver a high power level and in a half bridge mode to deliver a low power level. This results in a broad dynamic range, soft power on and improved safety, as switching between the modes may be controlled by a simple hardware.
Abstract:
The invention relates to a method for modulating the boost converter operating mode of a push-pull converter having a low-voltage-side circuit, having a first low-voltage-side switching device and a second low-voltage-side switching device; having a transformer having a high-voltage-side winding; and having a high-voltage-side circuit, which is configured as a full-bridge rectifier, having a first and a second rectification element which form a first half-bridge and a third and a fourth rectification element which form a second half-bridge; wherein the method comprises the steps of closing the first low-voltage-side switching device while simultaneously short-circuiting the high-voltage-side winding via the first or the fourth rectification element during a first time segment; opening the rectification element used for short-circuiting the high-voltage-side winding during a second time segment; opening the first low-voltage-side switching device and closing the second low-voltage-side switching device while simultaneously short-circuiting the high-voltage-side winding via the third or the fourth rectification element in the second half-bridge during a third time segment; and opening the rectification element used for short-circuiting the high-voltage-side winding during a fourth time segment.
Abstract:
According to one aspect, embodiments herein provide an AC-DC converter comprising a rectifier, a capacitor, a DC bus coupled to the capacitor, a plurality of first switches coupled to the DC bus, a plurality of second switches coupled between the rectifier and the first switches, a transformer having a primary winding and a secondary winding, the primary winding coupled to the plurality of first switches, the plurality of second switches, and the rectifier, and the secondary winding coupled to an output, and a controller configured, in response to a determination that the input AC power is acceptable, to operate the plurality of second switches and the plurality of first switches such that output DC voltage is maintained at a desired output DC voltage level, and operate the plurality of first switches such that a DC bus voltage on the DC bus is maintained at a desired DC bus voltage level.
Abstract:
A power conversion apparatus is configured to supply a power to an auxiliary device provided in a vehicle, and the power conversion apparatus includes: a primary side circuit including a primary side port; a secondary side circuit including a plurality of secondary side ports and magnetically coupled with the primary side circuit via a transformer; a control unit configured to control a transmitted power that is transmitted between the primary side circuit and the secondary side circuit by changing a phase difference between a switching of the primary side circuit and a switching of the secondary side circuit; an inverter connected to a first secondary side port and supplying the power to the auxiliary device via the primary side port; and a charger connected to a second secondary side port and supplying the power to the auxiliary device via the primary side port.
Abstract:
The invention relates to a method for modulating the boost converter operating mode of a push-pull converter having a low-voltage-side circuit, having a first low-voltage-side switching device and a second low-voltage-side switching device; having a transformer having a high-voltage-side winding; and having a high-voltage-side circuit, which is configured as a full-bridge rectifier, having a first and a second rectification element which form a first half-bridge and a third and a fourth rectification element which form a second half-bridge; wherein the method comprises the steps of closing the first low-voltage-side switching device whilst simultaneously short-circuiting the high-voltage-side winding via the first or the fourth rectification element during a first time segment; opening the rectification element used for short-circuiting the high-voltage-side winding during a second time segment; opening the first low-voltage-side switching device and closing the second low-voltage-side switching device whilst simultaneously short-circuiting the high-voltage-side winding via the third or the fourth rectification element in the second half-bridge during a third time segment; and opening the rectification element used for short-circuiting the high-voltage-side winding during a fourth time segment.
Abstract:
A multi-level voltage regulator system/method providing discrete regulation of a DC-DC intermediate bus converter (IBC) output voltage (Vout) is disclosed. The disclosed system/method allows IBC Vout to be regulated in discrete steps during periods where IBC input voltage (Vin) falls below nominal operating values. Rather than shutting down or degrading IBC Vout in an unpredictable non-linear fashion based on IBC input/loading, IBC Vout is regulated in fixed discrete steps, allowing IBC-connected point-of-load (POL) converters to obtain stable power input that is well-defined over IBC Vin. IBC operating parameters may define multi-dimensional operational state spaces of IBC Vout regulation that ensure optimum power flow to attached POLs while maintaining operational stability within the IBC regulator. Instabilities in IBC/POL performance across variations in IBC Vin, load transients, POL loading, and environmental variables may be prevented using Vin voltage step hysteresis.
Abstract:
The invention relates to an activation apparatus (20) for a galvanically decoupled direct voltage converter having a synchronous rectifier, comprising a signal generating device (22), which is designed to generate control signals (22c, 22d) for switch devices of the synchronous rectifier and a reference current signal (22b), a first comparator device (23), which is coupled to the signal generating device (22), and which is designed to detect the secondary-side output current (Jo) of the synchronous rectifier, compare it to the reference current signal (22b) and generate a current control signal in dependence on the comparison, and a pulse width modulation device (25), which is coupled to the signal generating device (22) and the first comparator device (23) and which is designed to generate pulse width modulated activation signals (25a) for the switch devices of the synchronous rectifier on the basis of the control signals (22c, 22d) and the current control signal, wherein the signal generating device (22) is furthermore designed to reduce the reference current signal (22b) within a first predetermined timespan to a predetermined reference current threshold.
Abstract:
A cooling structure for a heat-producing power magnetics device having at least two faces, includes a first cold plate having a first coolant passage and conductively coupled with at least the first face of the magnetics device and wherein at least a portion of heat generated by the power magnetics device is removed from the device by way of thermal conduction to the first coolant passage, and a coolant reservoir fluidly coupled with the first and second coolant passages.