Abstract:
Cooling apparatuses and methods are provided for cooling an assembly including a substrate supporting multiple electronics components. The cooling apparatus includes: multiple discrete cold plates, each having a coolant inlet, a coolant outlet and at least one coolant chamber disposed therebetween; and multiple coolant-carrying tubes, each tube extending from a respective cold plate and being in fluid communication with the coolant inlet or outlet of the cold plate. An enclosure is provided having a perimeter region which engages the substrate to form a cavity with the electronics components and cold plates being disposed within the cavity. The enclosure is configured with multiple bores, each bore being sized and located to receive a respective coolant-carrying tube of the tubes extending from the cold plates. Further, the enclosure is configured with a manifold in fluid communication with the tubes for distributing coolant in parallel to the cold plates.
Abstract:
A heat transfer apparatus and method of fabrication are provided for facilitating removal of heat from a heat generating electronic device. The heat transfer apparatus includes a thermally conductive base having a main surface, and a plurality of thermally conductive fins extending from the main surface. The thermally conductive fins are disposed to facilitate transfer of heat from the thermally conductive base, which can be a portion of the electronic device or a separate structure coupled to the electronic device. At least some conductive fins are composite structures, each including a first material coated with a second material, wherein the first material has a first thermal conductivity and the second material a second thermal conductivity. In one implementation, the thermally conductive fins are wire-bonded pin-fins, each being a discrete, looped pin-fin separately wire-bonded to the main surface and spaced less than 300 micrometers apart in an array.
Abstract:
A cooling apparatus and method of fabrication are provided for facilitating removal of heat from a heat generating electronic device. The cooling apparatus includes a thermally conductive base having a substantially planar main surface, and a plurality of thermally conductive pin fins wire-bonded to the main surface of the thermally conductive base and disposed to facilitate the transfer of heat from the thermally conductive base. The thermally conductive base can be a portion of the electronic device to be cooled or a separate structure coupled to the electronic device to be cooled. If a separate structure, the thermally conductive base has a coefficient of thermal expansion within a defined range of a coefficient of thermal expansion of the electronic device. In one implementation, the wire-bonded pin fins are discrete, looped pin fins separately wire-bonded to the main surface and spaced less than 300 micrometers apart in an array.
Abstract:
A coolant flow drive apparatus is provided for facilitating removal of heat from a cooling structure coupled to a heat generating electronics component. The coolant flow drive apparatus includes a turbine in fluid communication with a primary coolant flowing within a primary coolant flow loop, and a pump in fluid communication with a secondary coolant within a secondary coolant flow path. The secondary fluid flow path is separate from the primary coolant flow path. The flow drive apparatus further includes a magnetic coupling between the turbine and the pump, wherein the turbine drives the pump through the magnetic coupling to pump secondary coolant through the secondary coolant flow path.
Abstract:
A cooling apparatus for electronic drawers utilizing a passive fluid cooling loop in conjunction with an air cooled drawer cover. The air cooled cover provides an increased surface area from which to transfer heat to cooling air flowing through the drawer. The increased cooling surface uses available space within the drawer, which may be other than immediately adjacent to a high power device within the drawer. The passive fluid cooling loop provides heat transfer from the high power device to the air cooled cover assembly, allowing placement of the air cooled cover assembly other than immediately adjacent to the high power device. The cooling apparatus is easily disengaged from the electronics drawer, providing access to devices within the drawer.
Abstract:
System and method are provided for removing condensate from an air-to-liquid heat exchanger of a combined air/liquid enclosed apparatus for cooling rack-mounted electronic equipment. The condensate removal system includes a condensate collector for collecting liquid condensate from the air-to-liquid heat exchanger, and a vaporizing chamber in fluid communication with the condensate collector for receiving collected liquid therefrom. An actively controlled vaporizer vaporizes collected liquid within the vaporizing chamber and a vapor exhaust is in communication with the vaporizing chamber for venting vapor from the vaporizing chamber outside the cabinet containing the combined air/liquid cooling apparatus and rack-mounted electronic equipment.
Abstract:
A cooling fluid distribution assembly for a plurality of electronic modules, using a composite cold plate structure. One cold plate is associated with each electronic module requiring liquid cooling. Each cold plate includes a high thermal conductivity base sealably fastened to a cover, the cover having at least one fluid inlet and at least one fluid outlet. Cover fluid inlets and outlets are connected via a plurality of flexible, nonmetallic conduits, the conduits being bonded to the cover inlets and outlets. Each cold plate cover is formed of a material that is capable of being bonded to the flexible, nonmetallic conduits, covers are therefore formed of a different material than the material comprising the cold plate base. Cold plate structures preferably include internal fluid distribution structures. The resulting cooling fluid distribution assembly provides reliable fluid connections and is sufficiently flexible to adjust for variances in module height etc.
Abstract:
Method, system and program product are provided for monitoring coolant within a cooling system designed to provide system coolant to one or more electronics subsystems. The monitoring technique includes employing at least one pressure transducer to obtain multiple pressure measurements related to an amount of coolant within an expansion tank of the cooling system, and determining a rate of volume change of coolant within the expansion tank employing the multiple pressure measurements. Successive pressure measurements can be taken at a known time interval to determine the rate of volume change of coolant within the expansion tank. An automatic determination can also be made on the immediacy of action to be taken for service of the cooling system based on the rate of volume change of coolant within the expansion tank.
Abstract:
A cooling system is provided employing multiple coolant conditioning units (CCUs). Each CCU, which is coupled to a different, associated electronics rack of multiple electronics racks to be cooled, includes a heat exchanger, a first cooling loop with a control valve, and a second cooling loop. The first cooling loop receives chilled facility coolant from a source and passes at least a portion thereof via the control valve through the heat exchanger. The second cooling loop provides cooled system coolant to the associated electronics rack, and expels heat in the heat exchanger from the electronics rack to the chilled facility coolant in the first cooling loop. The control valve allows regulation of the facility coolant flow through the heat exchanger, thereby allowing independent control of temperature of the system coolant in the second cooling loop. Various CCU and associated component redundancies of the cooling system are also provided.
Abstract:
Magnetic pins preswaged at an off-center point along their length are assembled into a printed circuit board by energizing a pair of electromagnets, disposed one above and the other beneath the circuit board, to cause the pins scattered over a template to become erect. This results in some of the pins being disposed with their shanks protruding through the holes in a magnetic plate disposed below the circuit board while others of the pins pass through the circuit board but do not protrude below the magnetic plate. Increasing the energization of the upper magnet causes the non-protruding pins to be ejected from the circuit board. Subsequent deenergization of the upper magnet results in further pins becoming disposed with their shanks protruding through the magnetic plate. The energization cycle of the magnets is repeated until the circuit board contains a pattern of pins defined by the template with all the pins oriented so that they protrude through the magnetic plate.