Abstract:
A method of forming a semiconductor device includes defining a first type region and a second type region in a substrate, t separated by one or more inter-well STI structures; etching and filling, in at least one of the first type region and the second type region, one or more intra-well STI structures for isolating semiconductor devices formed within a same polarity well, wherein the one or more inter-well STI structures are formed at a substantially same depth with respect to the one or more intra-well STI structures; implanting, a main well region, wherein a bottom of the main well region is disposed above a bottom of the one or more inter-well and intra-well STI features; and implanting, one or more deep well regions that couple main well regions, wherein the one or more deep well regions are spaced away from the one or more inter-well STI structures.
Abstract:
Multi-gate metal oxide silicon transistors and methods of making multi-gate metal oxide silicon transistors are provided. The multi-gate metal oxide silicon transistor contains a bulk silicon substrate containing one or more convex portions between shallow trench regions; one or more dielectric portions over the convex portions; one or more silicon fins over the dielectric portions; a shallow trench isolation layer in the shallow trench isolation regions; and a gate electrode. The upper surface of the shallow trench isolation layer can be located below the upper surface of the convex portion, or the upper surface of the shallow trench isolation layer can be located between the lower surface and the upper surface of first dielectric layer. The multi-gate metal oxide silicon transistor can contain second spacers adjacent to side surfaces of the convex portions in a source/drain region.
Abstract:
Previously reported composite materials comprising a hydrophilic high-molecular-weight matrix and a low-molecular-weight organic compound involve a problem in that: it is difficult to compound a high load of the low-molecular-weight organic compound in the high-molecular-weight matrix; and thus produced composite material yields a high-molecular-weight matrix component that can form a thrombus when contacting with blood. Now, it becomes possible to produce a composite material having an antithrombogenic activity and a high content of a low-molecular-weight organic compound by the present invention comprising the steps of: crosslinking a polymer with an organic acid derivative which is used as a crosslinker in an organic solvent while at the same time embedding the low-molecular-weight organic compound therein; and substituting the organic solvent by water after the production of the high-molecular-weight matrix to effect precipitation and compounding of the low-molecular-weight organic compound in the high-molecular-weight matrix.
Abstract:
Disclosed are methods of making an integrated circuit with multiple thickness and/or multiple composition high-K gate dielectric layers and integrated circuits containing multiple thickness and/or multiple composition high-K gate dielectrics. The methods involve forming a layer of high-K atoms over a conventional gate dielectric and heating the layer of high-K atoms to form a high-K gate dielectric layer. Methods of suppressing gate leakage current while mitigating mobility degradation are also described.
Abstract:
Disclosed are methods of making an integrated circuit with multiple thickness and/or multiple composition high-K gate dielectric layers and integrated circuits containing multiple thickness and/or multiple composition high-K gate dielectrics. The methods involve forming a layer of high-K atoms over a conventional gate dielectric and heating the layer of high-K atoms to form a high-K gate dielectric layer. Methods of suppressing gate leakage current while mitigating mobility degradation are also described.
Abstract:
In one aspect of the present invention, a semiconductor device may include a semiconductor substrate; a first gate dielectric layer provided on the semiconductor substrate, the relative dielectric constant ratio of the first gate dielectric layer being no less than 8; a second gate dielectric layer provided on the semiconductor substrate, the relative dielectric constant ratio of the second gate dielectric layer being no less than 8; a first gate electrode provided on the first gate dielectric layer and made of germanide which is a metallic compound containing a metal element of a rare earth metal; and a second gate electrode provided on the second gate dielectric layer and made of silicide which is a metallic compound containing the same metal element of a rare earth metal as the germanide in the first gate electrode.
Abstract:
In one aspect of the present invention, a semiconductor device may include a semiconductor substrate; a first gate dielectric layer provided on the semiconductor substrate, the relative dielectric constant ratio of the first gate dielectric layer being no less than 8; a second gate dielectric layer provided on the semiconductor substrate, the relative dielectric constant ratio of the second gate dielectric layer being no less than 8; a first gate electrode provided on the first gate dielectric layer and made of germanide which is a metallic compound containing a metal element of a rare earth metal; and a second gate electrode provided on the second gate dielectric layer and made of silicide which is a metallic compound containing the same metal element of a rare earth metal as the germanide in the first gate electrode.
Abstract:
A semiconductor device manufacturing method comprises: forming a first nitride film on a semiconductor substrate; forming a first oxide film between said semiconductor substrate and said nitride film and forming a second oxide film on said nitride film; forming a second nitride film or an oxide and nitride film on said first nitride film by nitriding said second oxide film; and forming a gate electrode on a gate insulative film including said first oxide film, said first nitride film, and said second nitride film or said oxide and nitride film.
Abstract:
A semiconductor device comprising a semiconductor substrate and a MOSFET provided on the semiconductor substrate, the MOSFET including a gate insulating film and a gate electrode provided on the gate insulating film, wherein the gate insulating film has a higher dielectric constant in a side contacting the semiconductor substrate than in a side contacting the gate electrode.
Abstract:
Multi-gate metal oxide silicon transistors and methods of making multi-gate metal oxide silicon transistors are provided. The multi-gate metal oxide silicon transistor contains a bulk silicon substrate containing one or more convex portions between shallow trench regions; one or more dielectric portions over the convex portions; one or more silicon fins over the dielectric portions; a shallow trench isolation layer in the shallow trench isolation regions; and a gate electrode. The upper surface of the shallow trench isolation layer can be located below the upper surface of the convex portion, or the upper surface of the shallow trench isolation layer can be located between the lower surface and the upper surface of first dielectric layer. The multi-gate metal oxide silicon transistor can contain second spacers adjacent to side surfaces of the convex portions in a source/drain region.