Abstract:
In a monitoring system of a power wheelchair (low-speed mobility vehicle) and an automobile (vehicle of different type) having a remote monitoring device connected to them through a first communicator, each of the wheelchair and automobile includes a first transmitter transmitting location data to the remote monitoring device through a first communicator, and the remote monitoring device calculates an inter-vehicle distance between the wheelchair and automobile based on the location data and transmits an approaching signal indicating that they are approaching each other when the inter-vehicle distance is equal to or less than a first predetermined value, thereby reducing the driving burden on the operators and enhances driving safety.
Abstract:
In an engine of a working machine having no governor mechanism, the engine revolution speed is controlled such that the revolution speed can stably be maintained irrespective of the variation in load without adjusting the throttle opening to exploit the full potential of the engine. Since an engine 1 does not have the governor mechanism, an operator adjusts the throttle opening and controls the engine revolution speed. A map in which ignition timing (amount of angle of lead) is set by means of functions of the engine revolution speed is stored in an ignition timing map 30. The map 30 is set such that the engine revolution speed is equal to or higher than a value to be controlled (e.g. 7000 rpm), and the ignition timing is lagged as compared with a case in which the engine revolution speed is lower than the value to be controlled.
Abstract:
In an engine of a working machine having no governor mechanism, the engine revolution speed is controlled such that the revolution speed can stably be maintained irrespective of the variation in load without adjusting the throttle opening to exploit the full potential of the engine. Since an engine 1 does not have the governor mechanism, an operator adjusts the throttle opening and controls the engine revolution speed. A map in which ignition timing (amount of angle of lead) is set by means of functions of the engine revolution speed is stored in an ignition timing map 30. The map 30 is set such that the engine revolution speed is equal to or higher than a value to be controlled (e.g. 7000 rpm), and the ignition timing is lagged as compared with a case in which the engine revolution speed is lower than the value to be controlled.
Abstract:
A semiconductor light emitting element exhibiting a characteristic of deflected luminous intensity distribution, a semiconductor light emitting device capable of making, even when the element is off the center, a luminous center close to the center, and an element scribing method having a high element separation rate without causing a crack and chipping of pellet edges. The semiconductor light emitting element involves the use of a scribed pellet 10 into which a wafer including a semiconductor layer such as a luminous layer that is stacked on a compound semiconductor substrate inclined at 5.degree. through 20.degree. to a surface (100) in a orientation [011], is subjected to an element separation process by a scribing method.
Abstract:
In an apparatus for controlling an autonomous operating vehicle having an operating machine and a magnetic sensor adapted to detect a border of a travel-scheduled area, the vehicle is controlled to travel around the area from a start point along the border to sequentially record traveling directions and traveled distances on a bitmap. The generated travel trajectory is transformed to map information. A position of the vehicle is detected using bits of the bitmap of the transformed map information, and the vehicle is controlled to, as traveling straight in the north-south directions, while perform the operation with the operating machine based on the calculated traveling direction, the calculated traveled distance and the determined position, utilizing a primary reference direction obtained from a geomagnetic sensor as a reference.
Abstract:
In an apparatus for preventing theft of equipment such as outboard motor having a prime mover (engine), a prime mover controller and an authenticator (26) that acquires ID information from an electronic key when the key is brought close thereto by an operator and gives a permission to the prime mover controller to start the prime mover when acquired ID information is determined to correspond with authentication ID information, the permission was given is stored, and the authenticator determines whether the information is stored each time when activated (S12), and gives the permission to the prime mover controller immediately when it is determined that it is stored (S32), thereby enabling to easily restart the prime mover without authentication operation.
Abstract:
In an apparatus for preventing theft of equipment having a prime mover, an prime mover controller, and an authenticator that acquires ID information from an electronic key when the key is brought close thereto by an operator, and permits the prime mover controller to start the prime mover when the acquired ID information is determined to correspond with authentication ID information, data indicating a number of times the key is updated is included in the ID information, and the authenticator determines whether the number of times indicated in the data is greater than that in the authentication ID information, and when the number of times indicated in the data is greater than that in the authentication ID information, updates the authentication ID information such that it is equal to the number of times indicated in the data, thereby enabling to easily update authentication ID information of the equipment.
Abstract:
In an apparatus for preventing theft of equipment (electric wheelchair) having a prime mover (electric motor), a prime mover controller, and an authenticator that acquires ID information from an electronic key when the key is brought close thereto by an operator, determines whether the acquired ID information corresponds with authentication ID information, and permits the controller to start the prime mover when the acquired ID information is determined to correspond with authentication ID information, the controller stores operating history of the equipment, and the authenticator acquires the history from the controller when the key is brought close thereto and transmits the acquired history to the key when the key is brought close thereto, thereby making it easy to acquire the operating history of the equipment.
Abstract:
In an apparatus for controlling an autonomous operating vehicle having a prime mover and operating machine, it is configured to have a geomagnetic sensor responsive to magnets embedded in the area, detect angular velocity generated about z-axis in center of gravity of the vehicle, detect a wheel speed of the driven wheel, store map information including magnet embedded positions, detect a primary reference direction, detect a vehicle position relative to the magnet, and detect a vehicle position in the area, calculate a traveling direction and traveled distance of the vehicle, and control the operation performed through the operating machine in the area in accordance with a preset operation program based on the detected primary reference direction, the detected position of the vehicle in the area, the calculated traveling direction and the calculated traveled distance.
Abstract:
In an engine which starts using a recoil starter, ignition chance during inertia rotation is not missed. If the engine 42 is rotated by the recoil starter 41, output of a power generator which is directly connected to the engine 42 is increased, and a CPU 27 is reset at timing t0. At timing t1, if pulse P1 is input from a revolution number sensor 29 to the CPU 27, the CPU 27 outputs first ignition instructions when predetermined time T1 is elapsed (t2). At timing t3, second pulse P2 is input. At that time point, since the CPU 27 is normally operated, ignition timing is obtained from an ignition timing map 30 in accordance with the revolution number calculated by a time interval between the pulses P1 and P2, and the ignition instructions are output at timing t4 in accordance with the ignition timing. Thereafter, the ignition timing is determined using the ignition timing map 30.