Abstract:
Multiple properties of plasmonic assemblies are determined by their geometrical organization. This patent focuses on the formation of Janus structure of the asymmetric assembly structure of the gold nanorods and gold nanoparticles. Chiral structure of gold nanorods and gold nanoparticles can be obtained through the characterization of optical spectra of the Janus structure. And it opens the door for the explanation of the mechanism of the chirality, plays a strong guiding role in the negative refractive material above and has good application prospects.
Abstract:
An electrochemical paper-immunosensor and method for detecting aminoglycoside antibiotics is developed in the present invention. Single-walled carbon nanotubes are coated on the common filtration paper by dip-dry cycles. With antibody against neomycin adding to the coating solution, a high sensitive biosensor for specific detection of neomycin is prepared, satisfying to the rigid authority regulations. The sensor is not only sensitive but also rapid, comparing with the classic ELISA method, with LOD of 0.04 ng mL−1 and the whole detection process lasting less than 30 min. Another notable advantage of this invention is the versatility of the sensor, similar method is engaged to prepare the versatile sensor for other aminoglycoside antibiotics, replacement with relevant antibodies.
Abstract:
The invention relates to a human eye detection method, apparatus, system and storage medium. According to the invention, candidate eye areas are detected from a given image by: reading in the image; analyzing the image and getting a list of candidate eye areas; selecting one unverified candidate eye area from said list; determining a neighborhood region of the selected candidate eye area; calculating the neighborhood region's size, which is recorded as S; processing the region, obtaining dark areas; counting the number of dark areas, which number is recorded as N; comparing the ratio N/S to a predetermined first threshold, if the ratio N/S is smaller than said first threshold, the candidate eye area is determined as a false eye area and deleted from the list; else, the candidate eye area is determined as a real eye area and remains in the list; repeating foresaid selecting step to comparing step until there is no unverified candidate eye area in the list; and outputting the list for purpose of subsequent processing of the image. The invention may be applied to human body detection.
Abstract:
An electrochemical paper-immunosensor and method for detecting aminoglycoside antibiotics is developed in the present invention. Single-walled carbon nanotubes are coated on the common filtration paper by dip-dry cycles. With antibody against neomycin adding to the coating solution, a high sensitive biosensor for specific detection of neomycin is prepared, satisfying to the rigid authority regulations. The sensor is not only sensitive but also rapid, comparing with the classic ELISA method, with LOD of 0.04 ng mL−1 and the whole detection process lasting less than 30 min. Another notable advantage of this invention is the versatility of the sensor, similar method is engaged to prepare the versatile sensor for other aminoglycoside antibiotics, replacement with relevant antibodies.
Abstract:
Multiple properties of plasmonic assemblies are determined by their geometrical organization. This patent focuses on the formation of Janus structure of the asymmetric assembly structure of the gold nanorods and gold nanoparticles. Chiral structure of gold nanorods and gold nanoparticles can be obtained through the characterization of optical spectra of the Janus structure. And it opens the door for the explanation of the mechanism of the chirality, plays a strong guiding role in the negative refractive material above and has good application prospects.
Abstract:
A universal chirality sensor based on immuno-recognition-driven nanoparticle assembly has been fabricated. The design of smart 10 nm AuNP-antigen and 20 nmAuNP-antibody described for the detection of aflatoxin B1. 10 nm AuNP-antigen and 20 nmAuNP-antibody assemble to symmetric plasmonic nanoparticle dimers, which induced CD signal. The addition of aflatoxin B1 to the chirality sensor resulted in transverse CD signal compared to a blank control as shown by CD measurements. This process also allowed the rapid and facile determination of concentrations of aflatoxin B1 in drinking water (tap water). Good linearity for all calibration curves was obtained, and the limit of detection (LOD) for aflatoxin B1 was 0.02 ng/mL in tap water.
Abstract:
A universal chirality sensor based on immuno-recognition-driven nanoparticle assembly has been fabricated. The design of smart 10 nm AuNP-antigen and 20 nmAuNP-antibody described for the detection of aflatoxin B1. 10 nm AuNP-antigen and 20 nmAuNP-antibody assemble to symmetric plasmonic nanoparticle dimers, which induced CD signal. The addition of aflatoxin B1 to the chirality sensor resulted in transverse CD signal compared to a blank control as shown by CD measurements. This process also allowed the rapid and facile determination of concentrations of aflatoxin B1 in drinking water (tap water). Good linearity for all calibration curves was obtained, and the limit of detection (LOD) for aflatoxin B1 was 0.02 ng/mL in tap water.
Abstract:
A method of processing an image includes steps of identifying one candidate for a human face region within an image; calculating a probability that the candidate for human face region represents a human face; and saving the probability as attached information to the image. The method of processing an image can also include steps of identifying one candidate for human face region within an image; calculating a probability that the candidate for human face region represents a human face; judging whether or not the candidate for human face region represents a human face by comparing the probability with a threshold; and saving a result of the step of judging as attached information to the image. According to these methods, results of identifying candidates for human face regions will be saved to the image, and further processes to be conducted on the image can be facilitated.
Abstract:
The present invention provides a method of processing an image, which includes the steps of identifying one candidate for human face region within the image, selecting a mouth neighborhood within the candidate for human face region, processing the mouth neighborhood, and classifying the candidate for human face region based on results of the processing step. According to the method of the present invention, human faces are detected just based on pixels included in the mouth neighborhood, but not all the pixels of the entire face.