Abstract:
When an image including a composite figure made of a predefined figure and a free-form figure is scanned, the position and shape of the free-form figure and the predefined figure are appropriately adjusted. The composite figure is separated into a predefined figure and a free-form figure. With respect to the separated predefined figure, a representative point is set at a predetermined position according to the type of the predefined figure and a representative point is set for the free-form figure based on a criterion according to a type of the free-form figure. If the representative point of a predefined figure is in the vicinity of the representative point of the free-form figure, the free-form figure is corrected based on the position of the representative point of the free-form figure and the position of the representative point of the predefined figure.
Abstract:
An image in which at least one color component among a plurality of color components in an input color image has a resolution lower than that of the other color components is held as a base image. A rectangular region that includes an object image is extracted, a region of the object image and a region of a background image are specified in the rectangular region, and fill-up processing of the specified object image is executed in the base image. Fill-up processing executed at a boundary between the object image and the base image differs from fill-up processing executed at a boundary between the object image and the background image.
Abstract:
An image processing apparatus that includes an image acquiring unit that acquires a plurality of images, a processing unit that creates a plurality of composite images having a sequential relationship based on a predetermined rule using at least a portion of each of the acquired images, and selects a representative image corresponding to the plurality of composite images.
Abstract:
The invention includes inserting an object to be processed into a processing vessel, which can be maintained vacuum, and making the processing vessel vacuum; performing a sequence of forming a ZrO2 film on a substrate by alternately supplying zirconium source and an oxidizer into the processing vessel for a plurality of times and a sequence of forming SiO2 film on the substrate by alternately supplying silicon source and an oxidizer into the processing vessel for one or more times, wherein the number of times of performing each of the sequences is adjusted such that Si concentration of the films is from about 1 atm % to about 4 atm %; and forming a zirconia-based film having a predetermined thickness by performing the film forming sequences for one or more cycles, wherein one cycle indicates that each of the ZrO2 film forming sequences and the SiO2 film forming sequences are repeated for the adjusted number of times of performances.
Abstract:
According to the present invention, the face of a subject person can be rapidly detected. An image input unit inputs an image to be processed. A photographing-position input unit inputs photographing-position information attached to the processed image. An angle-range information determination unit determines an angle range, where face detection should be performed to the processed image, on the basis of the information obtained by the photographing-position information input unit. On the basis of information indicating the determined angle range, under the control of a process control unit, a face detection unit performs face detection to the processed image input by the image input unit in predetermined angle increments. A face integration unit integrates all of face data detected by a basic-angle-range face detection unit into face information and then outputs the information.
Abstract:
A plasma doping apparatus implants an impurity element into a surface of a processing target object W by using plasma. The apparatus includes a high frequency power supply 72 configured to supply a high frequency bias power to a mounting table 34 installed within a processing chamber 32; a gas feed unit 96 configured to supply a doping gas containing an impurity element into the processing chamber 32; and a plasma generation unit 78 configured to generate the plasma within the processing chamber 32. In accordance with this apparatus, a portion doped with the impurity element can be made very thin, and the impurity element can be rapidly doped in a high concentration.
Abstract:
An image in which at least one color component among a plurality of color components in an input color image has a resolution lower than that of the other color components is held as a base image. A rectangular region that includes an object image is extracted, a region of the object image and a region of a background image are specified in the rectangular region, and fill-up processing of the specified object image is executed in the base image. Fill-up processing executed at a boundary between the object image and the base image differs from fill-up processing executed at a boundary between the object image and the background image.
Abstract:
To provide adaptive image processing for a portrait, face information about the face of a person contained in an image is acquired, and it is determined on the basis of the face information whether a significant personal face is contained in the image. If there is face information representing the presence of a significant personal face, adaptive processing adjustment information which adjusts the contents of high quality processing for a portrait, which should be executed for the process target image, is generated from the face information about the face of the person contained in the image. The high quality processing adjusted on the basis of the adaptive processing adjustment information is executed for the image.
Abstract:
It is required to protect the copyrights and the like of partial images which form respective parts of an image obtained by reading an image, exchanged using a print as a medium, by an image scanner or the like. Input image data is divided into a plurality of image regions having different features, digital watermarks, which are embedded in the detected image regions by embedding methods corresponding to the features of the image regions, are extracted, and the availability of the input image is checked on the basis of the extracted digital watermarks.
Abstract:
In an image sensing system where a camera apparatus and a client device are connected for controlling the camera apparatus by the client device, the client device displays and arbitrarily shifts a predetermined size of detection area in an object image sensed by the camera apparatus, enabling to quickly perform camera parameter control, such as focus adjustment or the like, based on image signals of the detection area, with a small amount of transferring data. Moreover, detection areas of a sensed image are synthesized by controlling camera parameters for each of the detection areas so as to optimize camera parameters for all of the areas in the object image.