Abstract:
A magnetic driving apparatus includes a base, at least one passive magnetic unit, and a switching unit. The at least one passive magnetic unit includes two passive magnets movable on the base and a translation-to-rotation device for interconnecting the passive magnets. The switching unit includes two active magnetic units, and a driving unit. The passive magnets are located between the active magnetic units. Each of the active magnetic units includes at least two active magnets. The amount of the active magnets of each of the active magnetic units is the amount of the at least one passive magnetic unit plus one. The driving unit reciprocates the active magnetic units between two positions relative to the at least one passive magnetic unit so that the active magnets reciprocate the passive magnets.
Abstract:
Systems and methods for rapid and ultrasensitive detection of target biomolecules in a sample are presented. The detection of biomolecules is achieved through a synergistic use of immunoseparation and diffractometry, and the formation of antibody-biomolecule-ligand sandwich complexes that form diffraction gratings. Characteristic diffraction patterns are then produced upon illumination of the diffraction gratings with light. The diffraction patterns can be used to detect very low amounts of biomolecules present in the sample.
Abstract:
A magnetocaloric structure includes a magnetocaloric material and at least one protective layer. The magnetocaloric material has bar type or plank type. The protective layer is disposed on the magnetocaloric material.
Abstract:
A method for fabricating a semiconductor device is provided. A substrate comprising a P-well is provided. A low voltage device area and a high voltage device area are defined in the P-well. A photoresist layer is formed on the substrate. A photomask comprising a shielding region is provided. The shielding region is corresponded to the high voltage device area. A pattern of the photomask is transferred to the photoresist layer on the substrate by a photolithography process using the photomask. A P-type ion field is formed outside of the high-voltage device area by selectively doping P-type ions into the substrate using the photoresist layer as a mask.
Abstract:
The present invention includes methods of identifying a subject at risk for increased cellular PSA production and/or prostate cancer by detecting the presence or absence of a genetic polymorphism in the prostate specific antigen gene.
Abstract:
A device for determining dimensions of a workpiece includes a locating apparatus, a determining apparatus and a main processor. The locating apparatus includes a locating board supporting workpieces and defining at least one detecting aperture therethrough. The determining apparatus includes a detecting module, the detecting module includes at least one laser detector, each laser detector includes a laser emitter and a laser receiver respectively mounted on two opposite sides of the locating board. The main processor is connected to the locating apparatus and the determining apparatus, the laser emitter emits laser beams traveling through the detecting aperture and received by the laser receiver, and the main processor determines the dimension of the workpiece according to the dimension of parts on the laser receiver shielded by the workpiece.
Abstract:
A method of manufacturing a light guide plate containing a plurality of light-guiding micro structures comprises the steps of: preparing a mold that has a concave hole formed by a plurality of light-guiding micro structures; pouring a mixture of ultraviolet curable resins and glass microbeads into the mold; attaching a carrier onto the mixture; using a rolling tool to roll the surface of the carrier, such that the mold is filled up with the mixture uniformly, while the air among the mold, the carrier and the mixture is discharged; and finally projecting the ultraviolet light onto the ultraviolet curable resin, such that the ultraviolet curable resin can be cured at the carrier and removed from the mold, so as to form a light guide plate having a plurality of light-guiding micro structures.
Abstract:
The present invention relates to a method for growing a non-polar m-plane epitaxial layer on a single crystal oxide substrate, which comprises the following steps: providing a single crystal oxide with a perovskite structure; using a plane of the single crystal oxide as a substrate; and forming an m-plane epitaxial layer of wurtzite semiconductors on the plane of the single crystal oxide by a vapor deposition process. The present invention also provides an epitaxial layer having an m-plane obtained according to the aforementioned method.
Abstract:
A magnetocaloric structure includes a magnetocaloric material and at least one protective layer. The magnetocaloric material has bar type or plank type. The protective layer is disposed on the magnetocaloric material.