Abstract:
First, a board is placed on a board mounting portion with a lower mold and an upper mold being opened. Then, a resin material having such size and shape that correspond to the size and shape of a cavity formed in the lower mold is fitted in the cavity. Thereafter, the resin material is heated resulting in melted resin. Thereafter, the lower mold and the upper mold are closed, with a space formed by the upper mold and the lower mold being reduced in pressure. As a result, chips and wires are immersed in the melted resin. Thereafter, the melted resin is set, so that a resin mold product including the board and the set resin is formed.
Abstract:
A semiconductor device is manufactured by an integrated circuit forming process, and a series of subsequent steps. In the series of steps, a protection tape 18 is adhered onto a first surface of a semiconductor substrate on which a plurality of semiconductor elements are formed, and the second surface of the semiconductor substrate is ground so that the semiconductor substrate has a desired thickness, the semiconductor substrate is then conveyed while controlling the temperature of the semiconductor substrate. The semiconductor substrate is then separated into a plurality of semiconductor elements. The occurrence of warping on the semiconductor substrate during conveyance of the semiconductor substrate is thus prevented.
Abstract:
Provided is a method for chip packaging, including the steps of: providing a semi-packaged wafer which has a cutting trail and a metal bonding pad of the chip; forming a first protective layer on the cutting trail; forming on the metal bonding pad a sub-ball metal electrode; forming a solder ball on the sub-ball metal electrode; dicing the wafer along the cutting trail. The first protective layer according to the present invention can prevent the metal in the cutting trail from being separated by electroplating, and protect the lateral sides of a discrete chip after cutting. The process flow thereof is simple, and enhances the efficiency of the packaging as well as its yield.
Abstract:
Provided is a method for chip packaging, including the steps of: providing a semi-packaged wafer which has a cutting trail and a metal bonding pad of the chip; forming on the metal bonding pad a sub-ball metal electrode, using a selective formation process; forming a protective layer on the wafer in a region not including the sub-ball metal electrode, with the protective layer covering the cutting trail; forming a solder ball on the sub-ball metal electrode; dicing the wafer along the cutting trail. The present invention can prevent metal in the cutting trail from being affected during the production of the sub-ball metal electrode, and protect the lateral sides of a discrete chip after cutting. The process flow thereof is simple, and enhances the efficiency of the packaging as well as its yield.
Abstract:
A method for manufacturing a wafer level package is provided that enables suppressing the wearing of a cutter and extending the lifetime of the cutter, including forming insulating first resin over the top face of a substrate, which includes a groove for wiring to be formed; forming a film of first metal that is to serve as a portion of the wiring on the top face of the first resin using physical vapor deposition; forming a film of second metal that is to form a portion of the wiring on the top face of the first metal, with a lower hardness than the first metal; setting a cutter at a height corresponding to a place where the film of the first metal is not formed on a side face of the groove or the film thickness is low; and cutting at least the first resin by scanning the cutter.
Abstract:
Provided is a method for chip packaging, including the steps of: providing a semi-packaged wafer which has a cutting trail and a metal bonding pad of the chip; forming on the metal bonding pad a sub-ball metal electrode, using a selective formation process; forming a protective layer on the wafer in a region not including the sub-ball metal electrode, with the protective layer covering the cutting trail; forming a solder ball on the sub-ball metal electrode; dicing the wafer along the cutting trail. The present invention can prevent metal in the cutting trail from being affected during the production of the sub-ball metal electrode, and protect the lateral sides of a discrete chip after cutting. The process flow thereof is simple, and enhances the efficiency of the packaging as well as its yield.
Abstract:
Provided is a method for chip packaging, including the steps of: providing a semi-packaged wafer which has a cutting trail and a metal bonding pad of the chip; forming a first protective layer on the cutting trail; forming on the metal bonding pad a sub-ball metal electrode; forming a solder ball on the sub-ball metal electrode; dicing the wafer along the cutting trail. The first protective layer according to the present invention can prevent the metal in the cutting trail from being separated by electroplating, and protect the lateral sides of a discrete chip after cutting. The process flow thereof is simple, and enhances the efficiency of the packaging as well as its yield.