Abstract:
There is provided a method of manufacturing a multi-layer ceramic condenser. A method of manufacturing a multi-layer ceramic condenser may include: laminating a plurality of dielectric green sheets having internal electrodes formed thereon to form a laminate; forming through holes in a region of the laminate where an external electrode is to be formed; filling the through holes with conductive paste to form the external electrode; cutting the laminate having the external electrode formed thereon; and firing the cut laminate to form at least one multi-layer ceramic condenser.
Abstract:
The present invention provides a multi-layered ceramic substrate including a first insulating sheet having a first via contact; and a second insulating sheet joined to the first insulating sheet, wherein the second insulating sheet has a second via contact aligned with the first via contact up and down to be joined to the first via contact, wherein the first via contact has a form extended to the inside of the second via contact.
Abstract:
A method of manufacturing a capacitor-embedded low temperature co-fired ceramic substrate. A capacitor part is manufactured by firing a deposition including at least one high dielectric ceramic sheet to form a capacitor part. A plurality of low temperature co-fired green sheets are provided. Each of the low temperature co-fired green sheet has at least one of a conductive pattern and a conductive via hole thereon. A low temperature co-fired ceramic deposition is formed by depositing the low temperature co-fired green sheets to embed the capacitor part in the low temperature co-fired ceramic deposition. The embedded capacitor part is connected either to the conductive pattern or the conductive via hole of an adjacent green sheet. Then the low temperature co-fired ceramic deposition having the capacitor part embedded therein is fired.
Abstract:
There is provided a method of manufacturing a multi-layer ceramic condenser. A method of manufacturing a multi-layer ceramic condenser may include: laminating a plurality of dielectric green sheets having internal electrodes formed thereon to form a laminate; forming through holes in a region of the laminate where an external electrode is to be formed; filling the through holes with conductive paste to form the external electrode; cutting the laminate having the external electrode formed thereon; and firing the cut laminate to form at least one multi-layer ceramic condenser.
Abstract:
Provided herein is a plasma display panel. The plasma display panel comprises a front substrate, a rear substrate opposite to the front substrate and having address electrodes formed thereon, a lattice-shaped partition wall formed between the front substrate and the rear substrate, a phosphor applied to a discharge space partitioned by the partition wall, and a plurality of scanning electrodes and common electrodes formed in intersection regions of the partition wall and extending perpendicular to the front substrate. The plasma display panel has a sufficient aperture ratio, and thus has enhanced light emitting efficiency. The scanning electrodes and the common electrodes formed in the intersection regions of the partition walls have a vertical construction, thereby effectively preventing the phosphor from being damaged by the plasma. Discharge uniformly occurs at the outer periphery of the discharge cell, thereby inducing effective excitation of the phosphor.
Abstract:
There is provided a method of repairing a probe board, the method including: preparing a plurality of first via electrodes filled with a first filling material in a board body formed as a ceramic sintered body; forming a via hole for an open via electrode among the plurality of first via electrodes; filling the via hole with a second filling material having a lower sintering temperature than that of the first filling material; and forming a second via electrode by sintering the second filling material. The open via repair according to the present invention improves the manufacturing yield of the board and reduces the manufacturing costs thereof.
Abstract:
There is provided a probe card, including: a substrate having a plurality of grooves formed in one surface thereof; and at least one probe pin having a plurality of substrate combining protrusions formed on one surface thereof and corresponding to the plurality of grooves, the plurality of substrate combining protrusions having heights corresponding to the plurality of grooves.
Abstract:
Disclosed herein are a multilayer ceramic substrate and a method for manufacturing the same. In a method for manufacturing the multilayer ceramic substrate, which has a ceramic laminate including multiple ceramic layers and allowing interconnection between layers through vias respectively formed in the multiple ceramic layers, the method includes: preparing a ceramic laminate in which a void is formed around a via in at least one ceramic layer of multiple ceramic layers; immersing the ceramic laminate in a precipitating bath in which an electrode solution is contained; putting the ceramic laminate out of the precipitating bath after a predetermined period of time, and then removing a nanoparticle film stacked on a surface of a multilayer ceramic substrate; and applying heat to the multilayer ceramic substrate to form nanoparticles filling an inside of the void, after the removing of the nanoparticle film.
Abstract:
A method for manufacturing a ceramic substrate, and a ceramic substrate using the same are disclosed. The method for manufacturing a ceramic substrate includes: forming a first adhesive layer on a blister formed on a substrate; filling the blister having the first adhesive layer formed thereon with a filler; and hardening the ceramic substrate. A blister formed on the ceramic substrate can be removed to make the substrate have a smooth surface, thus improving reliability.
Abstract:
There is provided a method of repairing a probe board, the method including: preparing a plurality of first via electrodes filled with a first filling material in a board body formed as a ceramic sintered body; forming a via hole for an open via electrode among the plurality of first via electrodes; filling the via hole with a second filling material having a lower sintering temperature than that of the first filling material; and forming a second via electrode by sintering the second filling material. The open via repair according to the present invention improves the manufacturing yield of the board and reduces the manufacturing costs thereof.