Abstract:
An ion implanter system has a movable wafer support for holding a semiconductor wafer and a beam source that generates a beam for implanting ions in the semiconductor wafer while the wafer is moving. A plurality of path segments are identified, through which the wafer support is to move to expose the semiconductor wafer to the ion beam. A first position and a second position are identified for each respective one of the plurality of path segments, such that, when the wafer is in each first position and each second position, a perimeter of the beam projected in a plane of the wafer is tangent to a perimeter of the wafer. The ion implanter is configured to automatically move the wafer along each of the plurality of path segments, starting at the respective first position on each respective path segment and stopping at the respective second position on the same segment, so as to expose the wafer to the beam for implanting ions in the wafer.
Abstract:
An apparatus and method for providing target thickness and surface profile uniformity control of a multi-head chemical mechanical polishing (CMP) process is disclosed. An exemplary method includes providing at least two wafers; determining a surface profile of each of the at least two wafers; determining an operation mode for a chemical mechanical polishing (CMP) process based on the surface profiles of the at least two wafers; determining a CMP polishing recipe for each of the at least two wafers based on the operation mode; and performing the CMP process on the at least two wafers based on the determined CMP polishing recipes.
Abstract:
A method of performing chemical mechanical polish (CMP) processes on a wafer includes providing the wafer; determining a thickness profile of a feature on a surface of the wafer; and, after the step of determining the thickness profile, performing a high-rate CMP process on the feature using a polish recipe to substantially achieve a within-wafer thickness uniformity of the feature. The polish recipe is determined based on the thickness profile.
Abstract:
A system and method for controlling a dosage profile is disclosed. An embodiment comprises separating a wafer into components of a grid array and assigning each of the grid components a desired dosage profile based upon a test to compensate for topology differences between different regions of the wafer. The desired dosages are decomposed into directional dosage components and the directional dosage components are translated into scanning velocities of the ion beam for an ion implanter. The velocities may be fed into an ion implanter to control the wafer-to-beam velocities and, thereby, control the implantation.
Abstract:
A system and method for controlling a dosage profile is disclosed. An embodiment comprises separating a wafer into components of a grid array and assigning each of the grid components a desired dosage profile based upon a test to compensate for topology differences between different regions of the wafer. The desired dosages are decomposed into directional dosage components and the directional dosage components are translated into scanning velocities of the ion beam for an ion implanter. The velocities may be fed into an ion implanter to control the wafer-to-beam velocities and, thereby, control the implantation.
Abstract:
An embodiment is a method for semiconductor processing control. The method comprises identifying a key process stage from a plurality of process stages based on a parameter of processed wafers, forecasting a trend for a wafer processed by the key process stage and some of the plurality of process stages based on the parameter, and dispatching the wafer to one of a first plurality of tools in a tuning process stage. The one of the first plurality of tools is determined based on the trend.
Abstract:
A method of performing chemical mechanical polish (CMP) processes on a wafer includes providing the wafer; determining a thickness profile of a feature on a surface of the wafer; and, after the step of determining the thickness profile, performing a high-rate CMP process on the feature using a polish recipe to substantially achieve a within-wafer thickness uniformity of the feature. The polish recipe is determined based on the thickness profile.
Abstract:
An ion implanter system has a movable wafer support for holding a semiconductor wafer and a beam source that generates a beam for implanting ions in the semiconductor wafer while the wafer is moving. A plurality of path segments are identified, through which the wafer support is to move to expose the semiconductor wafer to the ion beam. A first position and a second position are identified for each respective one of the plurality of path segments, such that, when the wafer is in each first position and each second position, a perimeter of the beam projected in a plane of the wafer is tangent to a perimeter of the wafer. The ion implanter is configured to automatically move the wafer along each of the plurality of path segments, starting at the respective first position on each respective path segment and stopping at the respective second position on the same segment, so as to expose the wafer to the beam for implanting ions in the wafer.
Abstract:
A method of performing chemical mechanical polish (CMP) processes on a wafer includes providing the wafer; determining a thickness profile of a feature on a surface of the wafer; and, after the step of determining the thickness profile, performing a high-rate CMP process on the feature using a polish recipe to substantially achieve a within-wafer thickness uniformity of the feature. The polish recipe is determined based on the thickness profile.
Abstract:
An apparatus and method for providing target thickness and surface profile uniformity control of a multi-head chemical mechanical polishing (CMP) process is disclosed. An exemplary method includes providing at least two wafers; determining a surface profile of each of the at least two wafers; determining an operation mode for a chemical mechanical polishing (CMP) process based on the surface profiles of the at least two wafers; determining a CMP polishing recipe for each of the at least two wafers based on the operation mode; and performing the CMP process on the at least two wafers based on the determined CMP polishing recipes.