摘要:
Implant devices described herein may be adapted to communicate with other devices via an antenna array. The antenna array may be configured to minimize radiation to surrounding tissue and/or maximize signal power in a direction of device(s) with which the implant device communicates.
摘要:
An article comprising a tunable filter includes an optical cavity, a tuning device and a filter-disabling device. The tuning device is operable to change the center transmission wavelength of the tunable filter. The filter-disabling device is operable to temporarily disrupt the finesse or otherwise affect the transmissibility of the optical cavity, thereby preventing the transmission of any intervening wavelengths during tuning.
摘要:
A micro-mechanical optical modulator having a movable membrane that is spaced from a multi-layer mirror that is disposed on a substrate. The multi-layer mirror includes an anti-reflection layer that is disposed on the substrate, and a coating layer that is disposed on the anti-reflection layer. The combined thickness of the membrane and the coating layer is equal to an integer multiple of one-half of the operating wavelength of the modulator. This thickness restriction is different than prior art Fabry-Perot cavity modulators, which typically independently restrict membrane thickness and coating layer thickness, each to multiples of one quarter of the operating wavelength. By relaxing the requirements imposed by the prior art on layer thickness, modulator performance parameters can be optimized. Specifically, optical bandwidth can be traded for insertion loss and vice versa, as suits the specifics of a particular application.
摘要:
Mechanically compliant bumps for flip-chip bonding have a base that is deposited, for example, on the contact pad of a semiconductor chip. A thin wall depends from the periphery of the upper surface of base. The wall advantageously completely encircles the upper surface of the mechanically compliant bump. The wall, which is capable of flexing or deforming under pressure provides mechanical compliance. The wall is able to flex or deform under pressure even if the bump is formed from high-temperature metal. These mechanically compliant bumps facilitate sound electrical connections even when an electronics device is brought into contact for bonding out of parallel.
摘要:
During device design, wire bonds are typically considered lumped electrical parasitic elements. To minimize their effect, designs attempt to reduced their length. In the invention, wire bonds are considered as transmission lines and their spacing and configuration on the device planned accordingly. Specifically, bond wires are treated as “coplanar wires.” By selecting a proper combination on wire diameter, bond wire spacing, separation of the bond wires from the substrate and the substrate dielectric constant, a desired bond wire impedance is achievable.
摘要:
An optical detector is provided including a substantially annular metallic ring positioned on either side of an active (i.e. intrinsic) region of the optical detector to minimize optical crosstalk. Optical crosstalk originates from adjacent optical sources (e.g., VCSELs) emitting light toward the direction of the optical detector. The metallic ring prevents the light which propagates substantially parallel to a base of the optical detector from reaching the active region of the optical detector.
摘要:
An optical subsystem arrangement enables the electrical conductive or non-conductive bonding of an optical device to ferrules containing an optical fiber or to the optical fiber itself. In one embodiment, one or more contacts deposited on an end-face of the ferrule is bonded to one or more contacts on the optical component. Another embodiment is an opto/electrical connector for interconnecting an optical fiber through an optoelectronic component to one or more electrical facilities. Another arrangement enables the interconnecting of a plurality of optical devices to a plurality of optical fibers.
摘要:
An integrated semiconductor device is formed by bonding the conductors of one fabricated semiconductor device having a substrate to the conductors on another fabricated semiconductor device having a substrate, flowing an etch-resist in the form of an uncured cement (e.g. epoxy) between the devices, allowing the etch-resist to solidify, and removing the substrate from one of the semiconductor devices. Preferably the etch-resist epoxy is retained to impart mechanical strength to the device. More specifically, a hybrid semiconductor device is formed by bonding the conductors of one or more GaAs/AlGaAs multiple quantum well modulators to conductors on an IC chip, wicking an uncured epoxy between the modulators and the chip, allowing the epoxy to cure, and removing the substrate from the modulator.
摘要:
An in-situ method is disclosed for highly accurate lattice matching using reflection high energy electron diffraction dynamics. The method includes the steps of providing a substrate of a first semiconductor material and initiating growth of a second semiconductor material thereon. The oscillation amplitude of intensity I of waveform cycles is monitored using reflection high energy electron diffraction. A maximum intensity I.sup.+ and a minimum intensity I.sup.- is determined over a predetermined number of waveform cycles. The intensity drop .DELTA.I from initial reflectivity to minimum reflectivity of the waveform cycles is determined and a normalized figure of merit FM is calculated for the predetermined number of waveform cycles using the relationship: ##EQU1## The fluxes of the second semiconductor material are then adjusted to maximize FM and optimize lattice matching. A multiple quantum well light modulator is also provided including a semiconductor substrate of InP, a multiple quantum well region, disposed above the InP substrate, composed of InGaAs and having a thickness of about 4 .mu.m. The modulator is characterized by a lattice mismatch of less than 2.times.10.sup.-4.
摘要:
A semiconductor device is provided that includes an optical cavity that is designed to provide a prescribed resonant optical wavelength. The optical cavity includes a mirror structure deposited on top of a substrate and a multi-layer region such as an electroabsorptive region, for example, deposited over the mirror structure. A partial antireflective coating is deposited over the multi-layer region. The mirror structure and the multilayer region have a thickness variation sufficient to yield a resonant optical wavelength that deviates from the prescribed resonant wavelength. The partial antireflective coating has a non-uniform thickness variation that causes the resonant optical wavelength to shift substantially toward the prescribed resonant optical wavelength.