Abstract:
The invention provides a medical device in which a metallic porous body is joined to at least a part of a surface of the main body of a medical device, and a surface modification method for the medical device. The metallic porous body is formed in multilayers.
Abstract:
This invention relates to a scaffold consisting of a biodegradable polymeric material with a composition gradient of calcium phosphate that is capable of effectively regenerating the hard/soft tissue interface and an implant for hard/soft tissue filling with the utilization of such scaffold.
Abstract:
Sustained release microparticles suitable for various types of drugs, or drug-containing sustained release microparticles capable of sustained release of drugs over a period of three days or more and capable of inhibiting initial burst release; a process for producing the same; and preparations containing the microparticles are disclosed. The drug-containing sustained release microparticles comprise a drug other than human growth hormone and a porous apatite derivative, and optionally include a water-soluble bivalent metal compound. The drug-containing sustained release microparticles can be produced by dispersing under agitation microparticles of a porous apatite derivative in an aqueous solution containing a drug so that the aqueous solution infiltrates into the porous apatite derivative; optionally adding an aqueous solution containing a water-soluble bivalent metal compound that may infiltrate into the porous apatite derivative; further adding additives such as a stabilizer to the mixture; and effecting lyophilization or vacuum drying.
Abstract:
This invention relates to a method for cartilage tissue engineering using scaffolds in simulated microgravity culture. This invention enables engineering of homogeneous cartilage tissue using bone marrow cells in a more rapid manner in a simulated microgravity environment, while allowing control of the configuration of the resulting cartilage tissue.
Abstract:
The crosslinking agents and condensing agents that have been employed in biological adhesives and in treating medical devices such as cardiac valves are non-natural compounds synthesized artificially. Thus, they are not metabolized in vivo and exhibit toxicity to living bodies. These compounds are thus used only in a restricted amount and for limited purposes in the clinical sites. The present invention provides a biological low-molecular-weight derivative obtained by modifying carboxyl groups of a biological low-molecular-weight compound with N-hydroxysuccinimide, N-hydroxysulfosuccinimide, or a derivative thereof and a crosslinked high-molecular-weight product obtained by crosslinking various high-molecular-weight compounds with this derivative.
Abstract:
A method for producing a porous body comprising apatite/collagen composite fibers comprising the steps of gelling a dispersion comprising long apatite/collagen composite fibers having an average length of 10-75 mm, short apatite/collagen composite fibers having an average length of 0.05-1 mm, and a liquid; freezing and drying the resultant gel to form a porous body; and cross-linking collagen in the porous body.
Abstract:
This invention provides a method for three-dimensional cartilage tissue engineering by culturing bone marrow cells in a simulated microgravity environment that is realized by a bioreactor such as an RWV.
Abstract:
The present invention provides a new metal or metal oxide porous material and a preparation method thereof, and more particularly concerns a new sponge-shaped noble metal, especially a silver porous material that is useful as a catalyst for an organic synthetic reaction such as an epoxidation reaction and partial oxidation reaction, and a functional material for electronic devices, heat dissipation and bacterial filtration and a preparation method thereof, as well as such a new silver catalyst.
Abstract:
Disclosed is a two-component, bio-degradable/absorbable adhesive medical material, which has a bonding component comprising a biodegradable polymer, and a hardening component comprising a low-molecular-weight derivative prepared by modifying a carboxyl group in a di- or tri-carboxylic acid of the citric acid cycle, with an electron-attracting group (one or a combination of two or more selected from the group consisting of a succinimidyl group, a sulfosuccinimidyl group, a maleimidyl group, a phthalimidyl group, an imidazolyl group, a nitrophenyl group and a tresyl group, and derivatives thereof). The present invention is intended to meet the need for developing a biological tissue adhesive having strong bonding force and low biological toxicity, in the situation where a conventional hemostatic material, blood-vessel embolizing material, sealant or aneurysm closing material has been liable to peel off from its applied site and has not been able to achieve sufficient hemostatic effect or sealing/closing strength in occluding a blood vessel, stopping bleeding, sealing air-leak or closing an aneurysm.
Abstract:
This invention relates to a scaffold consisting of a biodegradable polymeric material with a composition gradient of calcium phosphate that is capable of effectively regenerating the hard/soft tissue interface and an implant for hard/soft tissue filling with the utilization of such scaffold.