摘要:
A method for producing a micromechanical structure, and a micromechanical structure having a movable structure and a stationary structure made of silicon. In the method for producing the micromechanical structure, in one process step, a superficial metal-silicide layer is produced in the movable structure and/or the stationary structure.
摘要:
A semiconductor device having a substrate, and at least one contact, situated on and/or above a surface of the substrate, having at least one layer made of a conductive material, the conductive material including at least one metal. The layer made of the conductive material is sputtered on, and has tear-off marks on at least one outer side area between an outer base area facing the surface and an outer contact area facing away from the surface. A manufacturing method for a semiconductor device having at least one contact is also described.
摘要:
A method for producing a device which is suitable for delivering a substance into or through the skin and includes an array of microneedles developed out of an Si semiconductor substrate, the microneedles being affixed on and/or inside a flexible support made from a polymer material. A device producible by this method.
摘要:
The invention relates to a method for capping a MEMS wafer (1), in particular a sensor and/or actuator wafer, with at least one mechanical functional element (10). According to the invention, it is provided that the movable mechanical functional element (10) is fixed by means of a sacrificial layer (14), and that a cap layer (19) is applied to, in particular epitaxially grown onto, the sacrificial layer (14) and/or to at least one intermediate layer (17) applied to the sacrificial layer (14). The invention also relates to a capped MEMS wafer (1).
摘要:
An exhaust gas treatment device for a CVD device for the deposition of silicon-rich nitride in a CVD process, in particular an LPCVD process. An aftertreatment chamber is provided into which ammonia gas can be metered. In addition, a CVD device and an exhaust gas treatment method are described.
摘要:
A method for producing a micromechanical structure, and a micromechanical structure having a movable structure and a stationary structure made of silicon. In the method for producing the micromechanical structure, in one process step, a superficial metal-silicide layer is produced in the movable structure and/or the stationary structure.
摘要:
A micromechanical actuator includes a shaft and at least a first driving mechanism. The shaft and the first driving mechanism are connected by a first joint.
摘要:
A method for etching silicon carbide, a mask being produced on a silicon carbide layer, the unmasked areas of the silicon carbide layer being etched using a fluorine-containing compound, which is selected from the group including interhalogen compounds of fluorine and/or xenon difluoride. The use of chlorine trifluoride, chlorine pentafluoride, and/or xenon difluoride for structuring silicon carbide layers covered with masks containing silicon dioxide and/or silicon oxide carbide; a structured silicon carbide layer obtained by the method, and a microstructured electromechanical component or a microelectronic component including a structured silicon carbide layer obtained by the method.
摘要:
A sensor array, in particular a micromechanical sensor array, and methods for manufacturing the sensor array are provided, which sensor array includes a sensor section for supplying certain sensor signals, and a cover section provided on the sensor section to form a hermetically sealed sensor interior. An electronic analyzer device is at least partially integratable into cover section for analysis of the sensor signals, and electrically connectable to a corresponding circuit device of the sensor section.
摘要:
The invention relates to a method for capping a MEMS wafer (1), in particular a sensor and/or actuator wafer, with at least one mechanical functional element (10). According to the invention, it is provided that the movable mechanical functional element (10) is fixed by means of a sacrificial layer (14), and that a cap layer (19) is applied to, in particular epitaxially grown onto, the sacrificial layer (14) and/or to at least one intermediate layer (17) applied to the sacrificial layer (14). The invention also relates to a capped MEMS wafer (1).