摘要:
A magnetic tunnel junction (MTJ) (10) employing a dielectric tunneling barrier (16), useful in magnetoresistive random access memories (MRAMs) and other devices, has a synthetic antiferromagnet (SAF) structure (14, 16), comprising two ferromagnetic (FM) layers (26, 41; 51, 58; 61, 68) separated by a coupling layer (38, 56, 66). Improved magnetoresistance (MR) ratio is obtained by providing a further layer (44, 46, 46′, 47, 52, 62), e.g. containing Ta, preferably spaced apart from the coupling layer (38, 56, 66) by a FM layer (41, 30-2, 54). The further layer (44, 46, 46′, 47, 52, 62) may be a Ta dusting layer (44) covered by a FM layer (30-2), or a Ta containing FM alloyed layer (46), or a stack (46′) of interleaved FM and N-FM layers, or other combination (47, 62). Furthering these benefits, another FM layer, e.g., CoFe, NiFe, (30, 30-1, 51, 61) is desirably provided between the further layer (44, 46, 46′, 47, 52, 62) and the tunneling barrier (16). Ta, Zr, Hf, Ti, Mg, Nb, V, Zn, Cr, NiFeX, CoFeX and CoFeBX (X═Ta, Zr, Hf, Ti, Mg, Nb, V, Zn, Cr) are useful for the further layer (44, 46, 46′, 47, 52, 62).
摘要:
Methods and apparatus are provided for magnetic tunnel junction (MTJ) devices and arrays, comprising metal-insulator-metal (M-I-M) structures with opposed first and second ferro-magnetic electrodes with alterable relative magnetization direction. The insulator is formed by depositing an oxidizable material (e.g., Al) on the first electrode, naturally oxidizing it, e.g., at about 0.03 to 10 milli-Torr for up to a few thousand seconds at temperatures below about 35° C., then further rapidly (e.g., plasma) oxidizing at a rate much larger than that of the initial natural oxidation. The second electrode of the M-I-M structure is formed on this oxide. More uniform tunneling properties result. A second oxidizable material layer is optionally provided after the initial natural oxidation and before the rapid oxidation step during which it is substantially entirely converted to insulating oxide. A second natural oxidation cycle may be optionally provided before the second layer is rapidly oxidized.
摘要:
Methods and apparatus are provided for magnetic tunnel junctions (MTJs) (10, 50) employing synthetic antiferromagnet (SAF) free layers (14, 14′). The MTJ (10, 50) comprises a pinned ferromagnetic (FM) layer (32, 18), the SAF (14) and a tunneling barrier (16) therebetween. The SAF (14) has a first higher spin polarization FM layer (30) proximate the tunneling barrier (16) and a second FM layer (26) desirably separated from the first FM layer (30) by a coupling layer (28), with magnetostriction adapted to compensate the magnetostriction of the first FM layer (30). Such compensation reduces the net magnetostriction of the SAF (14) to near zero even with high spin polarization proximate the tunneling barrier (16). Higher magnetoresistance ratios (MRs) are obtained without adverse affect on other MTJ (10, 50) properties. NiFe combinations are desirable for the first (30) and second (26) free FM layers, with more Fe in the first (30) free layer and less Fe in the second (26) free layer. CoFeB and NiFeCo are also useful in the free layers.
摘要:
Low power magnetoresistive random access memory elements and methods for fabricating the same are provided. In one embodiment, a magnetoresistive random access device has an array of memory elements. Each element comprises a fixed magnetic portion, a tunnel barrier portion, and a free SAF structure. The array has a finite magnetic field programming window Hwin represented by the equation Hwin≈(Hsat−σsat)−(Hsw+σsw), where Hsw is a mean switching field for the array, Hsat is a mean saturation field for the array, and Hsw for each memory element is represented by the equation HSW≅√{square root over (HkHSAT)}, where Hk represents a total anisotropy and HSAT represents an anti-ferromagnetic coupling saturation field for the free SAF structure of each memory element. N is an integer greater than or equal to 1. Hk, HSAT, and N for each memory element are selected such that the array requires current to operate that is below a predetermined current value.
摘要:
A magnetic tunnel junction (MTJ), which is useful in magnetoresistive random access memories (MRAMs), has a free layer which is a synthetic antiferromagnet (SAF) structure. This SAF is composed of two ferromagnetic layers that are separated by a coupling layer. The coupling layer has a base material that is non-magnetic and also other materials that improve thermal endurance, control of the coupling strength of the SAF, and magnetoresistance ratio (MR). The preferred base material is ruthenium and the preferred other material is tantalum. Furthering these benefits, cobalt-iron is added at the interface between the tantalum and one of the ferromagnetic layers. Also the coupling layer can have even more layers and the materials used can vary. Also the coupling layer itself can be an alloy.
摘要:
A magnetic tunnel junction (MTJ), which is useful in magnetoresistive random access memories (MRAMs), has a free layer which is a synthetic antiferromagnet (SAF) structure. This SAF is composed of two ferromagnetic layers that are separated by a coupling layer. The coupling layer has a base material that is non-magnetic and also other materials that improve thermal endurance, control of the coupling strength of the SAF, and magnetoresistance ratio (MR). The preferred base material is ruthenium and the preferred other material is tantalum. Furthering these benefits, cobalt-iron is added at the interface between the tantalum and one of the ferromagnetic layers. Also the coupling layer can have even more layers and the materials used can vary. Also the coupling layer itself can be an alloy.
摘要:
An improved and novel device and fabrication method for a magnetic element, and more particularly a magnetic element with a crystallographically disordered seed layer and/or template layer seeding the nanocrystalline growth of subsequent layers, including a pinning layer, a pinned layer, and fixed layer.
摘要:
A spin-torque magnetoresistive memory element has a high magnetoresistance and low current density. A free magnetic layer is positioned between first and second spin polarizers. A first tunnel barrier is positioned between the first spin polarizer and the free magnetic layer and a second tunnel barrier is positioned between the second spin polarizer and the free magnetic layer. The magnetoresistance ratio of the second tunnel barrier has a value greater than double the magnetoresistance ratio of the first tunnel barrier.
摘要:
A spin-torque magnetoresistive memory element has a high magnetoresistance and low current density. A free magnetic, layer is positioned between first and second spin polarizers. A first tunnel barrier is positioned between the first spin polarizer and the free magnetic layer and a second tunnel barrier is positioned between the second spin polarizer and the free magnetic layer. The magnetoresistance ratio of the second tunnel barrier has a value greater than double the magnetoresistance ratio of the first tunnel barrier.
摘要:
Exchange-coupled magnetic multilayer structures for use with toggle MRAM devices and the like include a tunnel barrier layer (108) and a synthetic antiferromagnet (SAF) structure (300) formed on the tunnel barrier layer (108), wherein the SAF (300) includes a plurality (e.g., four or more) of ferromagnetic layers (302, 306, 310, 314) antiferromagnetically or ferromagnetically coupled by a plurality of respective coupling layers (304, 308, 312). The microcrystalline texture of one or more of the ferromagnetic layers is reduced to substantially zero as measured from X-Ray Diffraction by exposure of various layers to oxygen, by forming a detexturing layer, by adding oxygen during the ferromagnetic or coupling layer fabrication, and/or by using amorphous materials.