Abstract:
Provided are a rotational PCR apparatus, a PCR chip for the same and a rotational PCR method using the same.The disclosed rotational PCR apparatus includes: a PCR chip where PCR is performed; a rotating means connected to the PCR chip and rotating the PCR chip; and a temperature zone forming means spaced apart from the PCR chip, capable of applying thermal energy to the PCR chip and allowing the rotating PCR chip to pass through different temperature zones. The rotational PCR apparatus and method allow performance of PCR with wanted temperature condition and cycles by rotating the chip containing the target substance. Accordingly, a high-efficiency PCR process may be accomplished at low cost. Further, since the target substance can be effectively separated and purified utilizing the centrifugal force resulting from the rotating platform, separation and purification may be achieved economically without requiring additional equipments.
Abstract:
There is provided a microdevice for biomaterial detection, including a passive micromixer to mix a biomaterial, a first probe, and a second probe; a magnetic separation chamber connected with the passive micromixer; and a capillary electrophoresis channel connected with the magnetic separation chamber.
Abstract:
A door hinge mounting system includes a first multi-sided rotating member and a second multi-sided rotating member that are provided with at least two mounting surfaces. Each of the mounting surfaces of the first and second multi-sided rotating member is provided with a door hinge mounting unit.
Abstract:
A door hinge mounting system includes a first multi-sided rotating member and a second multi-sided rotating member that are provided with at least two mounting surfaces. Each of the mounting surfaces of the first and second multi-sided rotating member is provided with a door hinge mounting unit.
Abstract:
Disclosed are a light emitting device. The light emitting device includes a body having a cavity; a plurality of lead frames in the cavity; a light emitting chip; a first molding member having a first metal oxide material around the light emitting chip; and a second molding member having a second metal oxide material on the first molding member and the light emitting chip, wherein the light emitting chip includes a reflective electrode layer under a light emitting structure, wherein a top surface of the first molding member extends from a region between a top surface of the light emitting chip and a lateral side of the reflective electrode layer at a predetermined curvature, and wherein a bottom surface of the second molding member includes a curved surface which is convex toward the first molding member.
Abstract:
A light emitting device according to the embodiment includes a body; a first lead electrode having a first bonding part and a second bonding part; a second lead electrode having a third bonding part and a fourth bonding part; a gap part between the first and second lead electrodes; a third lead electrode on a bottom surface of the body; a fourth lead electrode on the bottom surface of the body; a first connection electrode; a second connection electrode; a light emitting chip; and a first bonding member, wherein the gap part includes a first gap part disposed between the first and third bonding parts, and the first gap part includes first and second regions spaced apart from each other corresponding to a width of the third bonding part, and a third region connected to the first and second regions and disposed perpendicularly to the first and second regions.
Abstract:
The present invention features a bolt for panel combination that includes a flange formed along an external circumference of a bolt head, a screw portion, of which an end is formed as a cone, combining a plurality of panels and a plurality of taps that are formed to the flange for the bolt to be fixed when the bolt is tightened. The present invention also features a panel combination method that includes forming a burred portion to a first panel by burring and punching, disposing a second panel, on which a bolt hole is formed, and corresponding a position of the burred portion, inserting the bolt for panel combination into the bolt hole and tightening the bolt to the burred portion in order to combine the first panel and the second panel.
Abstract:
The present invention relates to a method for preparing a graft rubber latex having a low residual monomer content, and more precisely, a method for preparing a graft rubber latex having a high rubber content, which is characterized by graft-copolymerization of a mixture of a rubber latex having a gel content of at least 95% and an average particle diameter of 2,500˜5000 Å, a monomer mixture comprising one or more compounds selected from a group consisting of aromatic vinyl compound, vinyl cyan compound and acrylate compound, and small particle size latex produced by emulsion polymerization. The method of the present invention has the advantages of speedy processes with excellent latex stability and at the same time reducing residual monomer content in the latex upon completion of the polymerization, improving perceived quality of the product and increasing yield.
Abstract:
Disclosed is a light emitting device. The light emitting device includes: a body including a cavity having first and second inner sides opposite to each other and third and fourth inner sides connected to first and second inner sides and opposite to each other; a first lead frame extending from a bottom of cavity under a first inner side of cavity; a second lead frame extending from the bottom of cavity under a second inner side of cavity; a gap part in the bottom of cavity between first and second lead frames; a light emitting chip on first lead frame; a protective chip on the second lead frame; a recess region recessed outward of body from at least one of third and fourth inner sides of cavity; and a first wire connected to the second frame disposed between light emitting chip and a sidewall of the recess region.
Abstract:
A rotational PCR apparatus, a PCR chip for the same and a rotational PCR method using the same.The rotational PCR apparatus includes: a PCR chip where PCR is performed; a rotating means connected to the PCR chip and rotating the PCR chip; and a temperature zone forming means spaced apart from the PCR chip, capable of applying thermal energy to the PCR chip and allowing the rotating PCR chip to pass through different temperature zones. The rotational PCR apparatus and method allow performance of PCR with wanted temperature condition and cycles by rotating the chip containing the target substance. Accordingly, a high-efficiency PCR process may be accomplished at low cost. Further, since the target substance can be effectively separated and purified utilizing the centrifugal force resulting from the rotating platform, separation and purification may be achieved economically without requiring additional equipments.