Method of concentrating nanoparticles and method of deaggregating aggregated nanoparticles
    1.
    发明授权
    Method of concentrating nanoparticles and method of deaggregating aggregated nanoparticles 有权
    浓缩纳米颗粒的方法和聚集纳米粒子的聚集方法

    公开(公告)号:US08679341B2

    公开(公告)日:2014-03-25

    申请号:US11919076

    申请日:2006-05-08

    摘要: A method of concentrating nanoparticles, having the steps of: adding and mixing an extraction solvent with a nanoparticles-dispersion liquid that nanoparticles are dispersed in a dispersion solvent, thereby concentrating and extracting the nanoparticles into a phase of the extraction solvent, and removing the dispersion solvent by filter-filtrating a liquid of concentrated extract, in which the extraction solvent is substantially incompatible with the dispersion solvent, and the extract solvent can form an interface after the extraction solvent is mixed with the dispersion solvent and left the mixture still; further a method of deaggregating aggregated nanoparticles, having the steps of: applying two or more ultrasonic waves different in frequency to a liquid containing aggregated nanoparticles, and thereby fining and dispersing the aggregated nanoparticles.

    摘要翻译: 一种浓缩纳米颗粒的方法,具有以下步骤:将提取溶剂与纳米颗粒分散在分散溶剂中的纳米颗粒分散液相加并混合,从而将纳米颗粒浓缩并萃取到萃取溶剂的相中,并除去分散体 溶剂,其中提取溶剂与分散溶剂基本上不相容,并且萃取溶剂可以在萃取溶剂与分散溶剂混合后形成界面,并将混合物静置; 进一步解聚聚集的纳米颗粒的方法,具有以下步骤:将不同频率的两个或更多个超声波施加到含有聚集的纳米颗粒的液体上,从而使聚集的纳米颗粒澄清和分散。

    PHARMACEUTICAL MULTIMERIC PARTICLES, AND MANUFACTURING METHOD FOR SAME
    2.
    发明申请
    PHARMACEUTICAL MULTIMERIC PARTICLES, AND MANUFACTURING METHOD FOR SAME 审中-公开
    药用多功能颗粒及其制造方法

    公开(公告)号:US20130096097A1

    公开(公告)日:2013-04-18

    申请号:US13702205

    申请日:2011-06-07

    IPC分类号: A61K9/10

    摘要: [Problem] The purpose of the present invention is to provide organic particles containing pharmaceutical particles of which the particles are small and the particle size distribution is narrow, and a manufacturing method for the same.[Solution] Provided are pharmaceutical multimeric particles of which the particles are small and the particle size distribution is narrow and which are characterized in being obtained by pouring into water a solution of a pharmaceutical multimer dissolved in a water-miscible organic solvent, and a manufacturing method for the pharmaceutical multimeric particles. Pharmaceutical dimeric particles thereof are characterized in being obtained by pouring into water a solution of a compound represented by general formula (I) dissolved in a water-miscible organic solvent.

    摘要翻译: 本发明的目的是提供含有粒子小,粒径分布狭窄的药物粒子的有机粒子及其制造方法。 [解决方案]提供了颗粒小且粒度分布窄的药物多聚体颗粒,其特征在于通过将溶解在水混溶性有机溶剂中的药物多聚体的溶液倒入水中而获得, 药物多聚体颗粒的方法。 其特征在于通过将溶解在与水可混溶的有机溶剂中的通式(I)表示的化合物的溶液倒入水中而获得的药物二聚体颗粒。

    Nitride Semiconductor Light-Emitting Device and Nitride Semiconductor Light-Emitting Device Fabrication Method
    4.
    发明申请
    Nitride Semiconductor Light-Emitting Device and Nitride Semiconductor Light-Emitting Device Fabrication Method 审中-公开
    氮化物半导体发光器件和氮化物半导体发光器件制造方法

    公开(公告)号:US20100032644A1

    公开(公告)日:2010-02-11

    申请号:US12307586

    申请日:2008-03-28

    IPC分类号: H01L33/00 H01L21/20

    摘要: An active layer (17) is provided so as to emit light having an emission wavelength in the 440 nm to 550 nm band. A first-conductivity-type gallium nitride semiconductor region (13), the active layer (17), and a second-conductivity-type gallium nitride semiconductor region (15) are arranged along a predetermined axis (Ax). The active layer (17) includes a well layer composed of hexagonal InxGa1-xN (0.16≦x≦0.4, x: strained composition), with the indium fraction x represented by the strained composition. The m-plane of the hexagonal InxGa1-xN is oriented along the predetermined axis (Ax). The well-layer thickness is between greater than 3 nm and less than or equal to 20 nm. Having the well-layer thickness be over 3 nm makes it possible to fabricate light-emitting devices having an emission wavelength of over 440 nm.

    摘要翻译: 提供有源层(17)以发射具有440nm至550nm波段的发射波长的光。 第一导电型氮化镓半导体区域(13),有源层(17)和第二导电型氮化镓半导体区域(15)沿预定轴线(Ax)布置。 活性层(17)包括由六方晶系In x Ga 1-x N(0.16 <= x <= 0.4,x:应变组成)构成的阱层,其中铟组分x由应变组合物表示。 六边形In x Ga 1-x N的m面沿预定轴线(Ax)取向。 阱层厚度大于3nm且小于或等于20nm。 具有超过3nm的阱层厚度使得可以制造发射波长超过440nm的发光器件。

    Process for producing fine porous polyimide particle
    5.
    发明申请
    Process for producing fine porous polyimide particle 审中-公开
    微孔聚酰亚胺微粒的制造方法

    公开(公告)号:US20060039984A1

    公开(公告)日:2006-02-23

    申请号:US10537497

    申请日:2003-07-09

    IPC分类号: A61K9/14 B29B9/00

    摘要: A method for preparation of porous polyimide microparticles comprising, forming polyamide acid microparticles by pouring polymer solution prepared by dissolving polyamide acid containing 0.5 to 80 weight % of alkali metal salt to polyamide acid by 0.1 to 15 weight % concentration into a poor solvent selected from the group consisting of aliphatic solvents, alicyclic solvents, aromatic solvents, CS2 and mixture of two or more these solvents and the temperature of which is adjusted to the range from −20° C. to 60° C., wherein particle size of said polyamide acid microparticles is adjusted to 50 nm to 10000 nm by controlling the temperature of said poor solvent, pore size of said polyamide acid microparticles is adjusted to the range from 20 nm to 500 nm and porosity of said polyamide acid microparticles is adjusted to the range from 0.1% to 30% by controlling a content or a kind of said alkali metal salt, then treating said polyamide acid microparticles by chemical imidation or thermal imidation, or by thermal imidation after chemical imidation so that the particle size distribution, pore size and porosity of said polyamide acid microparticles can be maintained.

    摘要翻译: 一种多孔聚酰亚胺微粒的制备方法,其特征在于,包括:将聚合物溶液倒入聚酰胺酸性微粒中形成聚酰胺酸微粒,所述聚合物溶液是将含有0.5〜80重量%的碱金属盐的聚酰胺酸溶解在0.1〜15重量%浓度的聚酰胺酸中, 由脂族溶剂,脂环族溶剂,芳族溶剂,CS 2和两种或更多种这些溶剂的混合物组成的组,其温度调节至-20℃至60℃。 通过控制所述不良溶剂的温度将所述聚酰胺酸微粒的粒径调整为50nm〜10000nm,将所述聚酰胺酸微粒的孔径调整为20nm〜500nm,将所述聚酰胺酸的孔隙率 通过控制所述碱金属盐的含量或种类将微粒调节至0.1%至30%的范围,然后通过化学酰亚胺化处理所述聚酰胺酸微粒 或热酰亚胺化,或通过化学酰亚胺化后的热酰亚胺化,使得可以维持所述聚酰胺酸微粒的粒度分布,孔径和孔隙率。

    Nitride semiconductor light emitting device and method for forming the same
    7.
    发明授权
    Nitride semiconductor light emitting device and method for forming the same 有权
    氮化物半导体发光器件及其形成方法

    公开(公告)号:US07973322B2

    公开(公告)日:2011-07-05

    申请号:US12440643

    申请日:2008-04-17

    IPC分类号: H01L29/00 H01L21/00

    摘要: An active layer 17 is provided so as to emit light having a light emission wavelength in the range of 440 to 550 nm. A first conduction type gallium nitride-based semiconductor region 13, the active layer 17, and a second conduction type gallium nitride-based semiconductor region 15 are disposed in a predetermined axis Ax direction. The active layer 17 includes a well layer composed of hexagonal InXGa1-XN (0.16≦X≦0.35, X: strained composition), and the indium composition X is represented by a strained composition. The a-plane of the hexagonal InXGa1-XN is aligned in the predetermined axis Ax direction. The thickness of the well layer is in the range of more than 2.5 nm to 10 nm. When the thickness of the well layer is set to 2.5 nm or more, a light emitting device having a light emission wavelength of 440 nm or more can be formed.

    摘要翻译: 提供有源层17以发射具有在440至550nm范围内的发光波长的光。 第一导电型氮化镓基半导体区域13,有源层17和第二导电型氮化镓基半导体区域15设置在预定的轴线方向。 有源层17包括由六方晶系InXGa1-XN(0.16&nlE; X&lt; EL; 0.35,X:应变组成)构成的阱层,铟组合物X由应变组成表示。 六边形InXGa1-XN的a平面在预定轴Ax方向上对准。 阱层的厚度在大于2.5nm至10nm的范围内。 当阱层的厚度设定为2.5nm以上时,可以形成发光波长为440nm以上的发光元件。

    NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR FORMING THE SAME
    9.
    发明申请
    NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR FORMING THE SAME 有权
    氮化物半导体发光器件及其形成方法

    公开(公告)号:US20100059759A1

    公开(公告)日:2010-03-11

    申请号:US12440643

    申请日:2008-04-17

    IPC分类号: H01L33/00

    摘要: An active layer 17 is provided so as to emit light having a light emission wavelength in the range of 440 to 550 nm. A first conduction type gallium nitride-based semiconductor region 13, the active layer 17, and a second conduction type gallium nitride-based semiconductor region 15 are disposed in a predetermined axis Ax direction. The active layer 17 includes a well layer composed of hexagonal InXGa1-XN (0.16≦X≦0.35, X: strained composition), and the indium composition X is represented by a strained composition. The a-plane of the hexagonal InXGa1-XN is aligned in the predetermined axis Ax direction. The thickness of the well layer is in the range of more than 2.5 nm to 10 nm. When the thickness of the well layer is set to 2.5 nm or more, a light emitting device having a light emission wavelength of 440 nm or more can be formed.

    摘要翻译: 提供有源层17以发射具有在440至550nm范围内的发光波长的光。 第一导电型氮化镓基半导体区域13,有源层17和第二导电型氮化镓基半导体区域15设置在预定的轴线方向。 有源层17包括由六方晶系InXGa1-XN(0.16&nlE; X&lt; EL; 0.35,X:应变组成)构成的阱层,铟组合物X由应变组成表示。 六边形InXGa1-XN的a平面在预定轴Ax方向上对准。 阱层的厚度在大于2.5nm至10nm的范围内。 当阱层的厚度设定为2.5nm以上时,可以形成发光波长为440nm以上的发光元件。